» Articles » PMID: 22395207

Biophysical and Physiological Origins of Blood Oxygenation Level-dependent FMRI Signals

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

Citing Articles

Correlation of zero echo time functional MRI with neuronal activity in rats.

Valjakka J, Paasonen J, Salo R, Paasonen E, Stenroos P, Gureviciene I J Cereb Blood Flow Metab. 2025; 271678X251314682.

PMID: 39846159 PMC: 11758440. DOI: 10.1177/0271678X251314682.


Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI.

Song D, Fan G, Chang M Cancers (Basel). 2025; 17(1.

PMID: 39796702 PMC: 11719598. DOI: 10.3390/cancers17010074.


Exploring methodological frontiers in laminar fMRI.

Chai Y, Zhang R Psychoradiology. 2025; 4:kkae027.

PMID: 39777367 PMC: 11706213. DOI: 10.1093/psyrad/kkae027.


Language task-based fMRI analysis using machine learning and deep learning.

Kuan E, Vegh V, Phamnguyen J, OBrien K, Hammond A, Reutens D Front Radiol. 2024; 4:1495181.

PMID: 39664795 PMC: 11631583. DOI: 10.3389/fradi.2024.1495181.


Robust data-driven segmentation of pulsatile cerebral vessels using functional magnetic resonance imaging.

Wright A, Xu T, Ingram J, Koo J, Zhao Y, Tong Y Interface Focus. 2024; 14(6):20240024.

PMID: 39649451 PMC: 11620823. DOI: 10.1098/rsfs.2024.0024.


References
1.
Kim S, Ugurbil K . Functional magnetic resonance imaging of the human brain. J Neurosci Methods. 1997; 74(2):229-43. DOI: 10.1016/s0165-0270(97)02252-8. View

2.
Frohlich A, Ostergaard L, Kiselev V . Theory of susceptibility-induced transverse relaxation in the capillary network in the diffusion narrowing regime. Magn Reson Med. 2005; 53(3):564-73. DOI: 10.1002/mrm.20394. View

3.
Weisskoff R, Zuo C, Boxerman J, Rosen B . Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med. 1994; 31(6):601-10. DOI: 10.1002/mrm.1910310605. View

4.
Jochimsen T, Norris D, Moller H . Is there a change in water proton density associated with functional magnetic resonance imaging?. Magn Reson Med. 2005; 53(2):470-3. DOI: 10.1002/mrm.20351. View

5.
Davis T, Kwong K, Weisskoff R, Rosen B . Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998; 95(4):1834-9. PMC: 19199. DOI: 10.1073/pnas.95.4.1834. View