» Articles » PMID: 22383973

Mosquitoes LTR Retrotransposons: a Deeper View into the Genomic Sequence of Culex Quinquefasciatus

Overview
Journal PLoS One
Date 2012 Mar 3
PMID 22383973
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A set of 67 novel LTR-retrotransposon has been identified by in silico analyses of the Culex quinquefasciatus genome using the LTR_STRUC program. The phylogenetic analysis shows that 29 novel and putatively functional LTR-retrotransposons detected belong to the Ty3/gypsy group. Our results demonstrate that, by considering only families containing potentially autonomous LTR-retrotransposons, they account for about 1% of the genome of C. quinquefasciatus. In previous studies it has been estimated that 29% of the genome of C. quinquefasciatus is occupied by mobile genetic elements.The potential role of retrotransposon insertions strictly associated with host genes is described and discussed along with the possible origin of a retrotransposon with peculiar Primer Binding Site region. Finally, we report the presence of a group of 38 retrotransposons, carrying tandem repeated sequences but lacking coding potential, and apparently lacking "master copy" elements from which they could have originated. The features of the repetitive sequences found in these non-autonomous LTR retrotransposons are described, and their possible role discussed.These results integrate the existing data on the genomics of an important virus-borne disease vector.

Citing Articles

Transposable element variants and their potential adaptive impact in urban populations of the malaria vector .

Vargas-Chavez C, Longo Pendy N, Nsango S, Aguilera L, Ayala D, Gonzalez J Genome Res. 2021; 32(1):189-202.

PMID: 34965939 PMC: 8744685. DOI: 10.1101/gr.275761.121.


Mosquito genomes are frequently invaded by transposable elements through horizontal transfer.

Melo E, Wallau G PLoS Genet. 2020; 16(11):e1008946.

PMID: 33253164 PMC: 7728395. DOI: 10.1371/journal.pgen.1008946.


Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways.

Gamez S, Srivastav S, Akbari O, Lau N Cells. 2020; 9(10).

PMID: 32992598 PMC: 7601171. DOI: 10.3390/cells9102180.


Transposable elements in the Anopheles funestus transcriptome.

Fernandez-Medina R, Carareto C, Struchiner C, Ribeiro J Genetica. 2017; 145(3):275-293.

PMID: 28424974 PMC: 5584644. DOI: 10.1007/s10709-017-9964-z.


The first complete Mag family retrotransposons discovered in Drosophila.

Glukhov I, Kotnova A, Stefanov Y, Ilyin Y Dokl Biochem Biophys. 2016; 466:1-4.

PMID: 27025475 DOI: 10.1134/S1607672916010014.


References
1.
McCarthy E, McDonald J . LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics. 2003; 19(3):362-7. DOI: 10.1093/bioinformatics/btf878. View

2.
Conte C, Dastugue B, Vaury C . Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes. Mol Cell Biol. 2002; 22(6):1767-77. PMC: 135603. DOI: 10.1128/MCB.22.6.1767-1777.2002. View

3.
Ganko E, Fielman K, McDonald J . Evolutionary history of Cer elements and their impact on the C. elegans genome. Genome Res. 2001; 11(12):2066-74. PMC: 311226. DOI: 10.1101/gr.196201. View

4.
Gdula D, Gerasimova T, Corces V . Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila. Proc Natl Acad Sci U S A. 1996; 93(18):9378-83. PMC: 38435. DOI: 10.1073/pnas.93.18.9378. View

5.
Jordan I, Rogozin I, Glazko G, Koonin E . Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003; 19(2):68-72. DOI: 10.1016/s0168-9525(02)00006-9. View