» Articles » PMID: 22378742

Estimating Maximum Bite Performance in Tyrannosaurus Rex Using Multi-body Dynamics

Overview
Journal Biol Lett
Specialty Biology
Date 2012 Mar 2
PMID 22378742
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.

Citing Articles

Osteology and functional morphology of a transitional pterosaur Dearc sgiathanach from the Middle Jurassic (Bathonian) of Scotland.

Jagielska N, OSullivan M, Butler I, Challands T, Funston G, Ross D BMC Ecol Evol. 2025; 25(1):9.

PMID: 39849380 PMC: 11761736. DOI: 10.1186/s12862-024-02337-9.


Estimated and in vivo measurements of bite force demonstrate exceptionally large bite forces in parrots (Psittaciformes).

Harrison S, Sutton G, Herrel A, Deeming D J Anat. 2024; 246(2):299-315.

PMID: 39315554 PMC: 11737312. DOI: 10.1111/joa.14144.


Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs.

Rowe A, Rayfield E iScience. 2024; 27(9):110679.

PMID: 39262785 PMC: 11387897. DOI: 10.1016/j.isci.2024.110679.


Behavioral correlates of fascicular organization: The confluence of muscle architectural anatomy and function.

Dickinson E, Hartstone-Rose A Anat Rec (Hoboken). 2023; 308(4):1265-1277.

PMID: 36880440 PMC: 11889482. DOI: 10.1002/ar.25187.


Quantitative biomechanical assessment of locomotor capabilities of the stem archosaur .

Demuth O, Wiseman A, Hutchinson J R Soc Open Sci. 2023; 10(1):221195.

PMID: 36704253 PMC: 9874271. DOI: 10.1098/rsos.221195.


References
1.
Rayfield E . Cranial mechanics and feeding in Tyrannosaurus rex. Proc Biol Sci. 2004; 271(1547):1451-9. PMC: 1691752. DOI: 10.1098/rspb.2004.2755. View

2.
van Eijden T, Korfage J, Brugman P . Architecture of the human jaw-closing and jaw-opening muscles. Anat Rec. 1997; 248(3):464-74. DOI: 10.1002/(sici)1097-0185(199707)248:3<464::aid-ar20>3.3.co;2-4. View

3.
Porro L, Holliday C, Anapol F, Ontiveros L, Ontiveros L, Ross C . Free body analysis, beam mechanics, and finite element modeling of the mandible of Alligator mississippiensis. J Morphol. 2011; 272(8):910-37. DOI: 10.1002/jmor.10957. View

4.
Pruim G, Ten Bosch J, De Jongh H . Jaw muscle EMG-activity and static loading of the mandible. J Biomech. 1978; 11(8-9):389-95. DOI: 10.1016/0021-9290(78)90073-8. View

5.
Sellers W, Crompton R . Using sensitivity analysis to validate the predictions of a biomechanical model of bite forces. Ann Anat. 2004; 186(1):89-95. DOI: 10.1016/S0940-9602(04)80132-8. View