» Articles » PMID: 22362734

Structure of the Bifunctional Methyltransferase YcbY (RlmKL) That Adds the M7G2069 and M2G2445 Modifications in Escherichia Coli 23S RRNA

Overview
Specialty Biochemistry
Date 2012 Feb 25
PMID 22362734
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The 23S rRNA nucleotide m(2)G2445 is highly conserved in bacteria, and in Escherichia coli this modification is added by the enzyme YcbY. With lengths of around 700 amino acids, YcbY orthologs are the largest rRNA methyltransferases identified in Gram-negative bacteria, and they appear to be fusions from two separate proteins found in Gram-positives. The crystal structures described here show that both the N- and C-terminal halves of E. coli YcbY have a methyltransferase active site and their folding patterns respectively resemble the Streptococcus mutans proteins Smu472 and Smu776. Mass spectrometric analyses of 23S rRNAs showed that the N-terminal region of YcbY and Smu472 are functionally equivalent and add the m(2)G2445 modification, while the C-terminal region of YcbY is responsible for the m(7)G2069 methylation on the opposite side of the same helix (H74). Smu776 does not target G2069, and this nucleotide remains unmodified in Gram-positive rRNAs. The E.coli YcbY enzyme is the first example of a methyltransferase catalyzing two mechanistically different types of RNA modification, and has been renamed as the Ribosomal large subunit methyltransferase, RlmKL. Our structural and functional data provide insights into how this bifunctional enzyme evolved.

Citing Articles

Post-transcriptional Modifications of the Large Ribosome Subunit Assembly Intermediates in Expressing Helicase-Inactive DbpA Variant.

Gracia Mazuca L, Mohl J, Cho S, Koculi E bioRxiv. 2025; .

PMID: 39974931 PMC: 11838604. DOI: 10.1101/2025.02.04.636506.


Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli.

Ero R, Leppik M, Reier K, Liiv A, Remme J Nucleic Acids Res. 2024; 52(11):6614-6628.

PMID: 38554109 PMC: 11194073. DOI: 10.1093/nar/gkae222.


The gene encodes RlmQ, the 23S rRNA methyltransferase forming mG2574 in the A-site of the peptidyl transferase center.

Wolff P, Labar G, Lechner A, Van Elder D, Soin R, Gueydan C RNA. 2023; 30(2):105-112.

PMID: 38071475 PMC: 10798245. DOI: 10.1261/rna.079853.123.


N7-methylguanosine modification: from regulatory roles to therapeutic implications in cancer.

Cai M, Yang C, Wang Z Am J Cancer Res. 2023; 13(5):1640-1655.

PMID: 37293166 PMC: 10244098.


The pattern of expression and prognostic value of key regulators for mG RNA methylation in hepatocellular carcinoma.

Chen J, Yao S, Sun Z, Wang Y, Yue J, Cui Y Front Genet. 2022; 13:894325.

PMID: 36118897 PMC: 9478798. DOI: 10.3389/fgene.2022.894325.


References
1.
Sunita S, Tkaczuk K, Purta E, Kasprzak J, Douthwaite S, Bujnicki J . Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes. J Mol Biol. 2008; 383(3):652-66. DOI: 10.1016/j.jmb.2008.08.062. View

2.
Wang K, Ma L, Nan J, Su X, Li L . Purification, crystallization and preliminary X-ray crystallographic analysis of 23S RNA m(2)G2445 methyltransferase RlmL from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010; 66(Pt 11):1484-6. PMC: 3001654. DOI: 10.1107/S1744309110035074. View

3.
Randau L, Stanley B, Kohlway A, Mechta S, Xiong Y, Soll D . A cytidine deaminase edits C to U in transfer RNAs in Archaea. Science. 2009; 324(5927):657-9. PMC: 2857566. DOI: 10.1126/science.1170123. View

4.
Tatusov R, Koonin E, Lipman D . A genomic perspective on protein families. Science. 1997; 278(5338):631-7. DOI: 10.1126/science.278.5338.631. View

5.
McLuckey S, Van Berkel G, Glish G . Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom. 2013; 3(1):60-70. DOI: 10.1016/1044-0305(92)85019-G. View