» Articles » PMID: 22357539

The Gut Anaerobe Faecalibacterium Prausnitzii Uses an Extracellular Electron Shuttle to Grow at Oxic-anoxic Interphases

Overview
Journal ISME J
Date 2012 Feb 24
PMID 22357539
Citations 151
Authors
Affiliations
Soon will be listed here.
Abstract

Faecalibacterium prausnitzii is one of the most abundant bacteria in the human gut ecosystem and it is an important supplier of butyrate to the colonic epithelium. Low numbers of faecalibacteria have been associated with inflammatory bowel disease. Despite being extremely oxygen sensitive, F. prausnitzii is found adherent to the gut mucosa where oxygen diffuses from epithelial cells. This paradox is now explained on the basis of gas tube experiments, flavin-dependent reduction of 5,5'-dithiobis-2-nitrobenzoate and microbial fuel cell experiments. The results show that F. prausnitzii employs an extracellular electron shuttle of flavins and thiols to transfer electrons to oxygen. Both compounds are present in the healthy human gut. Our observations may have important implications for the treatment of patients with Crohn's disease, for example, with flavin- or antioxidant rich diets, and they provide a novel key insight in host-microbe interactions at the gut barrier.

Citing Articles

Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation.

Partipilo G, Bowman E, Palmer E, Gao Y, Ridley Jr R, Alper H Appl Environ Microbiol. 2025; 91(1):e0246524.

PMID: 39807859 PMC: 11784080. DOI: 10.1128/aem.02465-24.


Exploring the influence of age and diet on gut microbiota development in children during the first 5 years: a study from Yaoundé, Cameroon.

Adjele J, Devi P, Kumari P, Yadav A, Tchuenchieu Kamgain A, Mouafo H Front Microbiol. 2025; 15:1512111.

PMID: 39744404 PMC: 11688346. DOI: 10.3389/fmicb.2024.1512111.


Multimodal analysis identifies microbiome changes linked to stem cell transplantation-associated diseases.

Artacho A, Gonzalez-Torres C, Gomez-Cebrian N, Moles-Poveda P, Pons J, Jimenez N Microbiome. 2024; 12(1):229.

PMID: 39511587 PMC: 11542268. DOI: 10.1186/s40168-024-01948-0.


MAIT cells: Conserved watchers on the wall.

Germain L, Veloso P, Lantz O, Legoux F J Exp Med. 2024; 222(1).

PMID: 39446132 PMC: 11514058. DOI: 10.1084/jem.20232298.


Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape.

Grant E, Parrish A, Boudaud M, Hunewald O, Hirayama A, Ollert M Microbiome. 2024; 12(1):179.

PMID: 39307855 PMC: 11418204. DOI: 10.1186/s40168-024-01898-7.


References
1.
Burrin D, Stoll B . Emerging aspects of gut sulfur amino acid metabolism. Curr Opin Clin Nutr Metab Care. 2006; 10(1):63-8. DOI: 10.1097/MCO.0b013e3280115d36. View

2.
Manach C, Scalbert A, Morand C, Remesy C, Jimenez L . Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79(5):727-47. DOI: 10.1093/ajcn/79.5.727. View

3.
Sokol H, Seksik P, Furet J, Firmesse O, Nion-Larmurier I, Beaugerie L . Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009; 15(8):1183-9. DOI: 10.1002/ibd.20903. View

4.
Saulnier D, Kolida S, Gibson G . Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr Pharm Des. 2009; 15(13):1403-14. DOI: 10.2174/138161209788168128. View

5.
Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J . Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009; 11(10):2574-84. DOI: 10.1111/j.1462-2920.2009.01982.x. View