» Articles » PMID: 22353423

NOV/CCN3 Attenuates Inflammatory Pain Through Regulation of Matrix Metalloproteinases-2 and -9

Overview
Publisher Biomed Central
Date 2012 Feb 23
PMID 22353423
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain.

Methods: We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for in vitro experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test.

Results: NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. In vitro, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1β- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through β1 integrin engagement. In vivo, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia.

Conclusions: This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.

Citing Articles

Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds.

Wang K, Mitoh Y, Horie K, Yoshida R J Neurochem. 2024; 169(1):e16291.

PMID: 39709613 PMC: 11663453. DOI: 10.1111/jnc.16291.


Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation.

Park J, Lee C, Kim Y Pharmaceuticals (Basel). 2023; 16(7).

PMID: 37513853 PMC: 10386117. DOI: 10.3390/ph16070941.


Higher Serum CCN3 Is Associated with Disease Activity and Inflammatory Markers in Rheumatoid Arthritis.

Wei Y, Peng L, Li Y, Zhang N, Shang K, Duan L J Immunol Res. 2020; 2020:3891425.

PMID: 32455138 PMC: 7232667. DOI: 10.1155/2020/3891425.


NOV/CCN3 induces cartilage protection by inhibiting PI3K/AKT/mTOR pathway.

Huang X, Ni B, Mao Z, Xi Y, Chu X, Zhang R J Cell Mol Med. 2019; 23(11):7525-7534.

PMID: 31454155 PMC: 6815824. DOI: 10.1111/jcmm.14621.


Effects of matrix metalloproteinase inhibitors on N-methyl-D-aspartate receptor and contribute to long-term potentiation in the anterior cingulate cortex of adult mice.

Matsuura T, Li X, Tao C, Zhuo M Mol Pain. 2019; 15:1744806919842958.

PMID: 30900509 PMC: 6480992. DOI: 10.1177/1744806919842958.


References
1.
Komori K, Nonaka T, Okada A, Kinoh H, Hayashita-Kinoh H, Yoshida N . Absence of mechanical allodynia and Abeta-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. FEBS Lett. 2004; 557(1-3):125-8. DOI: 10.1016/s0014-5793(03)01458-3. View

2.
Shimoyama T, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T . CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler Thromb Vasc Biol. 2010; 30(4):675-82. DOI: 10.1161/ATVBAHA.110.203356. View

3.
Luo M, Zhang D, Ma S, Huang Y, Shuster S, Porreca F . An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain. 2005; 1:29. PMC: 1253531. DOI: 10.1186/1744-8069-1-29. View

4.
Joliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M, Crochet J . Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol. 1992; 12(1):10-21. PMC: 364064. DOI: 10.1128/mcb.12.1.10-21.1992. View

5.
Uceyler N, Schafers M, Sommer C . Mode of action of cytokines on nociceptive neurons. Exp Brain Res. 2009; 196(1):67-78. DOI: 10.1007/s00221-009-1755-z. View