» Articles » PMID: 22311737

CD49f Enhances Multipotency and Maintains Stemness Through the Direct Regulation of OCT4 and SOX2

Overview
Journal Stem Cells
Date 2012 Feb 8
PMID 22311737
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

CD49f (integrin subunit α6) regulates signaling pathways in a variety of cellular activities. However, the role of CD49f in regulating the differentiation and pluripotency of stem cells has not been fully investigated. Therefore, in this study, human mesenchymal stem cells (hMSCs) were induced to form spheres under nonadherent culture conditions, and we found that the CD49f-positive population was enriched in MSC spheres compared with MSCs in a monolayer. The expression of CD49f regulated the ability of hMSCs to form spheres and was associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Furthermore, the forced expression of CD49f modulated the proliferation and differentiation potentials of hMSCs through prolonged activation of PI3K/AKT and suppressed the level of p53. We showed that the pluripotency factors OCT4 and SOX2 were recruited to the putative promoter region of CD49f, indicating that OCT4 and SOX2 play positive roles in the expression of CD49f. Indeed, CD49f expression was upregulated in human embryonic stem cells (hESCs) compared with hMSCs. The elevated level of CD49f expression was significantly decreased upon embryoid body formation in hESCs. In hESCs, the knockdown of CD49f downregulated PI3K/AKT signaling and upregulated the level of p53, inducing differentiation into three germ layers. Taken together, our data suggest that the cell-surface protein CD49f has novel and dynamic roles in regulating the differentiation potential of hMSCs and maintaining pluripotency.

Citing Articles

Mesenchymal stromal/stem cells from perinatal sources: biological facts, molecular biomarkers, and therapeutic promises.

Allouh M, Rizvi S, Alamri A, Jimoh Y, Aouda S, Ouda Z Stem Cell Res Ther. 2025; 16(1):127.

PMID: 40055783 PMC: 11889844. DOI: 10.1186/s13287-025-04254-0.


Possibilities and efficiency of MSC co-transfection for gene therapy.

Christoffers S, Seiler L, Wiebe E, Blume C Stem Cell Res Ther. 2024; 15(1):150.

PMID: 38783353 PMC: 11119386. DOI: 10.1186/s13287-024-03757-6.


Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations.

Chen S, Liang B, Xu J J Transl Med. 2024; 22(1):459.

PMID: 38750573 PMC: 11094970. DOI: 10.1186/s12967-024-05294-5.


CD49f and CD146: A Possible Crosstalk Modulates Adipogenic Differentiation Potential of Mesenchymal Stem Cells.

Tran A, Kim H, Oh S, Kim H Cells. 2024; 13(1).

PMID: 38201259 PMC: 10778538. DOI: 10.3390/cells13010055.


Efficient improvement of the proliferation, differentiation, and anti-arthritic capacity of mesenchymal stem cells by simply culturing on the immobilized FGF2 derived peptide, 44-ERGVVSIKGV-53.

Lee S, Abdal Dayem A, Kmiecik S, Lim K, Seo D, Kim H J Adv Res. 2023; 62:119-141.

PMID: 37777063 PMC: 11331723. DOI: 10.1016/j.jare.2023.09.041.