» Articles » PMID: 22307593

Constant-speed Vibrational Signaling Along Polyethyleneglycol Chain Up to 60-Å Distance

Overview
Specialty Science
Date 2012 Feb 7
PMID 22307593
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

A series of azido-PEG-succinimide ester oligomers with a number of repeating PEG units of 0, 4, 8, and 12 (azPEG0, 4, 8, and 12) was investigated using a relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy method. The RA 2DIR method relies on the energy transport in molecules and is capable of correlating the frequencies of vibrational modes separated by large through-bond distances. Excitation of the azido group in the compounds at ca. 2,100 cm(-1) generates an excess energy which propagates in the molecule as well as dissipates into the solvent. We discovered that a part of the excess energy propagates ballistically via the covalent backbone of the molecules with a constant speed of ca. 550 m/s. The transport is described as a propagation of a vibrational wavepacket having a mean-free-path length of 10-15 Å. The discovery has the potential for developing new efficient signal transduction strategies for molecular electronics and biochemistry. It also permits extending the distances accessible in RA 2DIR structural measurements up to ca. 60 Å.

Citing Articles

Ballistic Energy Transport via Long Alkyl Chains: A New Initiation Mechanism.

Nawagamuwage S, Williams E, Islam M, Parshin I, Burin A, Busschaert N J Phys Chem B. 2024; 128(36):8788-8796.

PMID: 39219091 PMC: 11403685. DOI: 10.1021/acs.jpcb.4c03386.


Tracking Energy Transfer across a Platinum Center.

Leong T, Collins B, Dey Baksi S, Mackin R, Sribnyi A, Burin A J Phys Chem A. 2022; 126(30):4915-4930.

PMID: 35881911 PMC: 9358659. DOI: 10.1021/acs.jpca.2c02017.


Competition of Several Energy-Transport Initiation Mechanisms Defines the Ballistic Transport Speed.

Nawagamuwage S, Qasim L, Zhou X, Leong T, Parshin I, Jayawickramarajah J J Phys Chem B. 2021; 125(27):7546-7555.

PMID: 34185993 PMC: 8287563. DOI: 10.1021/acs.jpcb.1c03986.


Molecules and the Eigenstate Thermalization Hypothesis.

Leitner D Entropy (Basel). 2020; 20(9).

PMID: 33265762 PMC: 7513195. DOI: 10.3390/e20090673.


Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction.

Baiz C, Blasiak B, Bredenbeck J, Cho M, Choi J, Corcelli S Chem Rev. 2020; 120(15):7152-7218.

PMID: 32598850 PMC: 7710120. DOI: 10.1021/acs.chemrev.9b00813.


References
1.
Yu C, Shi L, Yao Z, Li D, Majumdar A . Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 2005; 5(9):1842-6. DOI: 10.1021/nl051044e. View

2.
Kurochkin D, Naraharisetty S, Rubtsov I . Dual-frequency 2D IR on interaction of weak and strong IR modes. J Phys Chem A. 2005; 109(48):10799-802. DOI: 10.1021/jp055811+. View

3.
Botan V, Backus E, Pfister R, Moretto A, Crisma M, Toniolo C . Energy transport in peptide helices. Proc Natl Acad Sci U S A. 2007; 104(31):12749-54. PMC: 1937538. DOI: 10.1073/pnas.0701762104. View

4.
Steinel T, Asbury J, Zheng J, Fayer M . Watching Hydrogen Bonds Break: A Transient Absorption Study of Water. J Phys Chem A. 2008; 108(50):10957-10964. PMC: 2604912. DOI: 10.1021/jp046711r. View

5.
Lin Z, Lawrence C, Xiao D, Kireev V, Skourtis S, Sessler J . Modulating unimolecular charge transfer by exciting bridge vibrations. J Am Chem Soc. 2009; 131(50):18060-2. DOI: 10.1021/ja907041t. View