» Articles » PMID: 22306809

Interspecies Activity Correlations Reveal Functional Correspondence Between Monkey and Human Brain Areas

Overview
Journal Nat Methods
Date 2012 Feb 7
PMID 22306809
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

Citing Articles

Central Executive Network drives delta-9-tetrahydrocannabinol (THC)-induced nonlinear changes in large-scale functional connectivity in adolescent nonhuman primates.

Byun A, Deshpande H, Stover J, Kangas B, Kohut S Neuropsychopharmacology. 2025; .

PMID: 40016367 DOI: 10.1038/s41386-025-02068-5.


Brain areas for reversible symbolic reference, a potential singularity of the human brain.

van Kerkoerle T, Pape L, Ekramnia M, Feng X, Tasserie J, Dupont M Elife. 2025; 12.

PMID: 39937096 PMC: 11820117. DOI: 10.7554/eLife.87380.


Individual Brain Charting dataset extension, third release for movie watching and retinotopy data.

Pinho A, Richard H, Ponce A, Eickenberg M, Amadon A, Dohmatob E Sci Data. 2024; 11(1):590.

PMID: 38839770 PMC: 11153490. DOI: 10.1038/s41597-024-03390-1.


Mapping and comparing fMRI connectivity networks across species.

Pagani M, Gutierrez-Barragan D, de Guzman A, Xu T, Gozzi A Commun Biol. 2023; 6(1):1238.

PMID: 38062107 PMC: 10703935. DOI: 10.1038/s42003-023-05629-w.


Should one go for individual- or group-level brain parcellations? A deep-phenotyping benchmark.

Thirion B, Aggarwal H, Ponce A, Pinho A, Thual A Brain Struct Funct. 2023; 229(1):161-181.

PMID: 38012283 DOI: 10.1007/s00429-023-02723-x.


References
1.
Hasson U, Harel M, Levy I, Malach R . Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron. 2003; 37(6):1027-41. DOI: 10.1016/s0896-6273(03)00144-2. View

2.
Orban G, Claeys K, Nelissen K, Smans R, Sunaert S, Todd J . Mapping the parietal cortex of human and non-human primates. Neuropsychologia. 2005; 44(13):2647-67. DOI: 10.1016/j.neuropsychologia.2005.11.001. View

3.
Durand J, Nelissen K, Joly O, Wardak C, Todd J, Norman J . Anterior regions of monkey parietal cortex process visual 3D shape. Neuron. 2007; 55(3):493-505. PMC: 3011365. DOI: 10.1016/j.neuron.2007.06.040. View

4.
Tootell R, Tsao D, Vanduffel W . Neuroimaging weighs in: humans meet macaques in "primate" visual cortex. J Neurosci. 2003; 23(10):3981-9. PMC: 6741079. View

5.
Culham J, Kanwisher N . Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol. 2001; 11(2):157-63. DOI: 10.1016/s0959-4388(00)00191-4. View