» Articles » PMID: 22306319

Cripto/GRP78 Modulation of the TGF-β Pathway in Development and Oncogenesis

Overview
Journal FEBS Lett
Specialty Biochemistry
Date 2012 Feb 7
PMID 22306319
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.

Citing Articles

GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells.

Lin M, Mo Y, Li C, Liu Y, Feng X Med Oncol. 2025; 42(2):49.

PMID: 39827214 DOI: 10.1007/s12032-024-02586-0.


CRIPTO's multifaceted role in driving aggressive prostate cancer unveiled by in vivo, organoid, and patient data.

Rodrigues Sousa E, de Brot S, Zoni E, Zeinali S, Brunello A, Scarpa M Oncogene. 2024; 44(7):462-475.

PMID: 39592836 PMC: 11810784. DOI: 10.1038/s41388-024-03230-x.


Human Cripto-1 and Cripto-3 Protein Expression in Normal and Malignant Settings That Conflicts with Established Conventions.

Cuttitta F, Garcia-Sanmartin J, Feng Y, Sunday M, Kim Y, Martinez A Cancers (Basel). 2024; 16(21).

PMID: 39518018 PMC: 11545644. DOI: 10.3390/cancers16213577.


Inhibin subunit beta B (INHBB): an emerging role in tumor progression.

Liu Y, Zhou Q, Zou G, Zhang W J Physiol Biochem. 2024; 80(4):775-793.

PMID: 39183219 DOI: 10.1007/s13105-024-01041-y.


An Exploratory Data Analysis from Ovine and Bovine RNA-Seq Identifies Pathways and Key Genes Related to Cervical Dilatation.

Goncalves J, Ferraz J, Meirelles F, Nociti R, Oliveira M Animals (Basel). 2023; 13(13).

PMID: 37443850 PMC: 10339884. DOI: 10.3390/ani13132052.


References
1.
Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D . Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell. 2005; 120(6):857-71. DOI: 10.1016/j.cell.2005.01.013. View

2.
Chu J, Shen M . Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Dev Biol. 2010; 342(1):63-73. PMC: 2866749. DOI: 10.1016/j.ydbio.2010.03.009. View

3.
Lee C, Jan H, Lai J, Ma H, Hueng D, Lee Y . Nodal promotes growth and invasion in human gliomas. Oncogene. 2010; 29(21):3110-23. DOI: 10.1038/onc.2010.55. View

4.
Gonzalez-Gronow M, Selim M, Papalas J, Pizzo S . GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal. 2009; 11(9):2299-306. DOI: 10.1089/ARS.2009.2568. View

5.
Akhurst R, Derynck R . TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol. 2001; 11(11):S44-51. DOI: 10.1016/s0962-8924(01)02130-4. View