» Articles » PMID: 22294617

Loss of Abaxial Leaf Epicuticular Wax in Medicago Truncatula Irg1/palm1 Mutants Results in Reduced Spore Differentiation of Anthracnose and Nonhost Rust Pathogens

Abstract

To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, and one anthracnose pathogen, Colletotrichum trifolii, on the abaxial leaf surface. Cytological and chemical analyses revealed that the inhibition of rust preinfection structures in irg1 mutants is due to complete loss of the abaxial epicuticular wax crystals and reduced surface hydrophobicity. The composition of waxes on abaxial leaf surface of irg1 mutants had >90% reduction of C30 primary alcohols and a preferential increase of C29 and C31 alkanes compared with the wild type. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, which also controls dissected leaf morphology in M. truncatula. Transcriptome analysis of irg1/palm1 mutants revealed downregulation of eceriferum4, an enzyme implicated in primary alcohol biosynthesis, and MYB96, a major transcription factor that regulates wax biosynthesis. Our results demonstrate that PALM1 plays a role in regulating epicuticular wax metabolism and transport and that epicuticular wax influences spore differentiation of host and nonhost fungal pathogens.

Citing Articles

What are the 100 most cited fungal genera?.

Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E Stud Mycol. 2024; 108:1-411.

PMID: 39100921 PMC: 11293126. DOI: 10.3114/sim.2024.108.01.


Lipids and Lipid-Mediated Signaling in Plant-Pathogen Interactions.

Kuzniak E, Gajewska E Int J Mol Sci. 2024; 25(13).

PMID: 39000361 PMC: 11241471. DOI: 10.3390/ijms25137255.


Genome engineering of disease susceptibility genes for enhancing resistance in plants.

Bishnoi R, Kaur S, Sandhu J, Singla D Funct Integr Genomics. 2023; 23(3):207.

PMID: 37338599 DOI: 10.1007/s10142-023-01133-w.


A genome-wide association study and genomic prediction for resistance in soybean.

Xiong H, Chen Y, Pan Y, Wang J, Lu W, Shi A Front Plant Sci. 2023; 14:1179357.

PMID: 37313252 PMC: 10258334. DOI: 10.3389/fpls.2023.1179357.


Cranberry fruit epicuticular wax benefits and identification of a wax-associated molecular marker.

Erndwein L, Kawash J, Knowles S, Vorsa N, Polashock J BMC Plant Biol. 2023; 23(1):181.

PMID: 37020185 PMC: 10074888. DOI: 10.1186/s12870-023-04207-w.


References
1.
Rowland O, Lee R, Franke R, Schreiber L, Kunst L . The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett. 2007; 581(18):3538-44. DOI: 10.1016/j.febslet.2007.06.065. View

2.
Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D . Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol. 2011; 156(1):29-45. PMC: 3091054. DOI: 10.1104/pp.111.172320. View

3.
Millar A, Clemens S, Zachgo S, Giblin E, Taylor D, Kunst L . CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell. 1999; 11(5):825-38. PMC: 144219. DOI: 10.1105/tpc.11.5.825. View

4.
Jenks M, Tuttle H, Eigenbrode S, Feldmann K . Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis. Plant Physiol. 1995; 108(1):369-377. PMC: 157343. DOI: 10.1104/pp.108.1.369. View

5.
dErfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P . Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J. 2003; 34(1):95-106. DOI: 10.1046/j.1365-313x.2003.01701.x. View