» Articles » PMID: 22282106

Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

Overview
Publisher Springer
Date 2012 Jan 28
PMID 22282106
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy.

Citing Articles

A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution.

Moss R, Wulfers E, Lewetag R, Hornyik T, Perez-Feliz S, Strohbach T PLoS One. 2022; 17(6):e0270559.

PMID: 35771854 PMC: 9246225. DOI: 10.1371/journal.pone.0270559.


Implantable Cardioverter-Defibrillators With Versus Without Resynchronization Therapy in Patients With a QRS Duration >180 ms.

Sundaram V, Sahadevan J, Waldo A, Stukenborg G, Reddy Y, Asirvatham S J Am Coll Cardiol. 2017; 69(16):2026-2036.

PMID: 28427578 PMC: 6834434. DOI: 10.1016/j.jacc.2017.02.042.


Implementation of Contraction to Electrophysiological Ventricular Myocyte Models, and Their Quantitative Characterization via Post-Extrasystolic Potentiation.

Ji Y, Gray R, Fenton F PLoS One. 2015; 10(8):e0135699.

PMID: 26317204 PMC: 4552858. DOI: 10.1371/journal.pone.0135699.


Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis.

Boukens B, R Gutbrod S, Efimov I Adv Exp Med Biol. 2015; 859:343-65.

PMID: 26238060 PMC: 4729445. DOI: 10.1007/978-3-319-17641-3_14.


Patient-specific modelling of cardiac electrophysiology in heart-failure patients.

Potse M, Krause D, Kroon W, Murzilli R, Muzzarelli S, Regoli F Europace. 2014; 16 Suppl 4:iv56-iv61.

PMID: 25362171 PMC: 4217520. DOI: 10.1093/europace/euu257.


References
1.
Trayanova N, Constantino J, Gurev V . Electromechanical models of the ventricles. Am J Physiol Heart Circ Physiol. 2011; 301(2):H279-86. PMC: 3154669. DOI: 10.1152/ajpheart.00324.2011. View

2.
Fung J, Yu C, Yip G, Zhang Y, Chan H, Kum C . Variable left ventricular activation pattern in patients with heart failure and left bundle branch block. Heart. 2003; 90(1):17-9. PMC: 1768012. DOI: 10.1136/heart.90.1.17. View

3.
van Oosterom A, Oostendorp T . ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart. 2004; 90(2):165-8. PMC: 1768085. DOI: 10.1136/hrt.2003.014662. View

4.
Reumann M, Farina D, Miri R, Lurz S, Osswald B, Dossel O . Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy. Med Biol Eng Comput. 2007; 45(9):845-54. DOI: 10.1007/s11517-007-0230-x. View

5.
Spach M, Heidlage J, Dolber P, Barr R . Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study. Heart Rhythm. 2007; 4(2):175-85. PMC: 1847326. DOI: 10.1016/j.hrthm.2006.10.023. View