Giri P, Lim S, Khobragade T, Pagar A, Patil M, Sarak S
Nat Commun. 2024; 15(1):6371.
PMID: 39075048
PMC: 11286754.
DOI: 10.1038/s41467-024-50637-x.
Coenen A, Ferrer M, Jaeger K, Schorken U
Appl Microbiol Biotechnol. 2023; 107(7-8):2209-2221.
PMID: 36807735
PMC: 10033567.
DOI: 10.1007/s00253-023-12422-6.
Cardenas-Fernandez M, Sinclair O, Ward J
Microb Biotechnol. 2021; 15(1):305-317.
PMID: 34713952
PMC: 8719814.
DOI: 10.1111/1751-7915.13940.
Gerlach T, Nugroho D, Rother D
ChemCatChem. 2021; 13(10):2398-2406.
PMID: 34249169
PMC: 8251830.
DOI: 10.1002/cctc.202100163.
Bisello G, Longo C, Rossignoli G, Phillips R, Bertoldi M
Amino Acids. 2020; 52(8):1089-1105.
PMID: 32844248
PMC: 7497351.
DOI: 10.1007/s00726-020-02885-6.
Structural studies reveal flexible roof of active site responsible for ω-transaminase CrmG overcoming by-product inhibition.
Xu J, Tang X, Zhu Y, Yu Z, Su K, Zhang Y
Commun Biol. 2020; 3(1):455.
PMID: 32814814
PMC: 7438487.
DOI: 10.1038/s42003-020-01184-w.
Genome mining and characterisation of a novel transaminase with remote stereoselectivity.
Gavin D, Reen F, Rocha-Martin J, Abreu-Castilla I, Woods D, Foley A
Sci Rep. 2020; 9(1):20285.
PMID: 31889089
PMC: 6937235.
DOI: 10.1038/s41598-019-56612-7.
Insight into the dimer dissociation process of the Chromobacterium violaceum (S)-selective amine transaminase.
Ruggieri F, Campillo-Brocal J, Chen S, Humble M, Walse B, Logan D
Sci Rep. 2019; 9(1):16946.
PMID: 31740704
PMC: 6861513.
DOI: 10.1038/s41598-019-53177-3.
Enhancing PLP-Binding Capacity of Class-III ω-Transaminase by Single Residue Substitution.
Roura Padrosa D, Alaux R, Smith P, Dreveny I, Lopez-Gallego F, Paradisi F
Front Bioeng Biotechnol. 2019; 7:282.
PMID: 31681755
PMC: 6813460.
DOI: 10.3389/fbioe.2019.00282.
Gene Expression of on Intermediate and Abundant Sources of Fixed Nitrogen.
Hwang S, Chavarria N, Hackley R, Schmid A, Maupin-Furlow J
Int J Mol Sci. 2019; 20(19).
PMID: 31561502
PMC: 6801745.
DOI: 10.3390/ijms20194784.
Structural Consideration of the Working Mechanism of Fold Type I Transaminases From Eubacteria: Overt and Covert Movement.
Kwon S, Park H
Comput Struct Biotechnol J. 2019; 17:1031-1039.
PMID: 31452855
PMC: 6698932.
DOI: 10.1016/j.csbj.2019.07.007.
Structural basis of substrate recognition by a novel thermostable (S)-enantioselective ω-transaminase from Thermomicrobium roseum.
Kwon S, Lee J, Kim C, Jang H, Yun H, Jeon J
Sci Rep. 2019; 9(1):6958.
PMID: 31061438
PMC: 6502798.
DOI: 10.1038/s41598-019-43490-2.
Crystal structure of the apo form of a β-transaminase from Mesorhizobium sp. strain LUK.
Kwon S, Park H
Protein Sci. 2019; 28(5):964-970.
PMID: 30805955
PMC: 6459997.
DOI: 10.1002/pro.3594.
Thermostable Branched-Chain Amino Acid Transaminases From the Archaea and : Biochemical and Structural Characterization.
Isupov M, Boyko K, Sutter J, James P, Sayer C, Schmidt M
Front Bioeng Biotechnol. 2019; 7:7.
PMID: 30733943
PMC: 6353796.
DOI: 10.3389/fbioe.2019.00007.
B-factor Guided Proline Substitutions in Chromobacterium violaceum Amine Transaminase: Evaluation of the Proline Rule as a Method for Enzyme Stabilization.
Land H, Campillo-Brocal J, Svedendahl Humble M, Berglund P
Chembiochem. 2019; 20(10):1297-1304.
PMID: 30637901
PMC: 6593452.
DOI: 10.1002/cbic.201800749.
Characterization of a Putrescine Transaminase From and its Application to the Synthesis of Benzylamine Derivatives.
Galman J, Gahloth D, Parmeggiani F, Slabu I, Leys D, Turner N
Front Bioeng Biotechnol. 2019; 6:205.
PMID: 30622946
PMC: 6308316.
DOI: 10.3389/fbioe.2018.00205.
Structural and functional insight into serine hydroxymethyltransferase from Helicobacter pylori.
Sodolescu A, Dian C, Terradot L, Bouzhir-Sima L, Lestini R, Myllykallio H
PLoS One. 2018; 13(12):e0208850.
PMID: 30550583
PMC: 6294363.
DOI: 10.1371/journal.pone.0208850.
Single point mutations reveal amino acid residues important for Chromobacterium violaceum transaminase activity in the production of unnatural amino acids.
Almahboub S, Narancic T, Fayne D, OConnor K
Sci Rep. 2018; 8(1):17397.
PMID: 30478262
PMC: 6255834.
DOI: 10.1038/s41598-018-35688-7.
Strategic single point mutation yields a solvent- and salt-stable transaminase from Virgibacillus sp. in soluble form.
Guidi B, Planchestainer M, Contente M, Laurenzi T, Eberini I, Gourlay L
Sci Rep. 2018; 8(1):16441.
PMID: 30401905
PMC: 6219536.
DOI: 10.1038/s41598-018-34434-3.
Structural dynamics of the transaminase active site revealed by the crystal structure of a co-factor free omega-transaminase from Vibrio fluvialis JS17.
Shin Y, Yun H, Park H
Sci Rep. 2018; 8(1):11454.
PMID: 30061559
PMC: 6065307.
DOI: 10.1038/s41598-018-29846-0.