» Articles » PMID: 22255435

Non-rigid Registration of Longitudinal Brain Tumor Treatment MRI

Overview
Date 2012 Jan 19
PMID 22255435
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

To evaluate changes in brain structure or function, longitudinal images of brain tumor patients must be non-rigidly registered to account for tissue deformation due to tumor growth or treatment. Most standard non-rigid registration methods will fail to align these images due to the changing feature correspondences between treatment time points and the large deformations near the tumor site. Here we present a registration method which jointly estimates a label map for correspondences to account for the substantial changes that may occur during tumor treatment. Under a Bayesian parameter estimation framework, we employ different probability distributions depending on the correspondence labels. We incorporate models for image similarity, an image intensity prior, label map smoothing, and a transformation prior that encourages deformation near the estimated tumor location. Our proposed algorithm increases registration accuracy compared to a traditional voxel-based registration method as shown using both synthetic and real patient images.

Citing Articles

Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging.

Patel K, Xie Z, Yuan H, Islam S, Xie Y, He W Commun Biol. 2024; 7(1):414.

PMID: 38580839 PMC: 10997628. DOI: 10.1038/s42003-024-06096-7.


Quantitative evaluation of the influence of multiple MRI sequences and of pathological tissues on the registration of longitudinal data acquired during brain tumor treatment.

Canalini L, Klein J, Waldmannstetter D, Kofler F, Cerri S, Hering A Front Neuroimaging. 2023; 1:977491.

PMID: 37555157 PMC: 10406206. DOI: 10.3389/fnimg.2022.977491.


Automated Color-Coding of Lesion Changes in Contrast-Enhanced 3D T1-Weighted Sequences for MRI Follow-up of Brain Metastases.

Zopfs D, Laukamp K, Reimer R, Grosse Hokamp N, Kabbasch C, Borggrefe J AJNR Am J Neuroradiol. 2022; 43(2):188-194.

PMID: 34992128 PMC: 8985679. DOI: 10.3174/ajnr.A7380.


Predicting Infiltrative Hepatocellular Carcinoma Patient Outcome Post-TACE: MR Bias Field Correction Effect on 3D-quantitative Image Analysis.

Liu C, Smolka S, Papademetris X, Do Minh D, Gan G, Deng Y J Clin Transl Hepatol. 2020; 8(3):292-298.

PMID: 33083252 PMC: 7562808. DOI: 10.14218/JCTH.2020.00054.


Computerized PET/CT image analysis in the evaluation of tumour response to therapy.

Lu W, Wang J, Zhang H Br J Radiol. 2015; 88(1048):20140625.

PMID: 25723599 PMC: 4651254. DOI: 10.1259/bjr.20140625.

References
1.
Zacharaki E, Hogea C, Shen D, Biros G, Davatzikos C . Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage. 2009; 46(3):762-74. PMC: 2929986. DOI: 10.1016/j.neuroimage.2009.01.051. View

2.
Chitphakdithai N, Duncan J . Non-rigid registration with missing correspondences in preoperative and postresection brain images. Med Image Comput Comput Assist Interv. 2010; 13(Pt 1):367-74. PMC: 3031159. DOI: 10.1007/978-3-642-15705-9_45. View

3.
Christensen G, Rabbitt R, Miller M . Deformable templates using large deformation kinematics. IEEE Trans Image Process. 1996; 5(10):1435-47. DOI: 10.1109/83.536892. View

4.
Risholm P, Samsett E, Talos I, Wells W . A non-rigid registration framework that accommodates resection and retraction. Inf Process Med Imaging. 2009; 21:447-58. PMC: 2898517. DOI: 10.1007/978-3-642-02498-6_37. View

5.
Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D . Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18(8):712-21. DOI: 10.1109/42.796284. View