» Articles » PMID: 22248580

Brain Templates and Atlases

Overview
Journal Neuroimage
Specialty Radiology
Date 2012 Jan 18
PMID 22248580
Citations 245
Authors
Affiliations
Soon will be listed here.
Abstract

The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease-specificity. Accounting, or not, for these various factors in defining stereotaxic space has created the specter of an ever-expanding set of atlases, customized for a particular experiment, that are mutually incompatible. These difficulties continue to plague the brain mapping field. This review article summarizes the evolution of stereotaxic space in term of the basic principles and associated conceptual challenges, the creation of population atlases and the future trends that can be expected in atlas evolution.

Citing Articles

Optimizing spatial normalization of multisubject inner ear MRI: comparison of different geometry-preserving co-registration approaches.

Gerb J, Kirsch V, Kierig E, Brandt T, Dieterich M, Boegle R Sci Rep. 2025; 15(1):6414.

PMID: 39984604 PMC: 11845522. DOI: 10.1038/s41598-025-90842-2.


Understanding depression in autism: the role of subjective perception and anterior cingulate cortex volume.

Hao Y, Banker S, Trayvick J, Barkley S, Peters A, Thinakaran A Mol Autism. 2025; 16(1):9.

PMID: 39930465 PMC: 11812218. DOI: 10.1186/s13229-025-00638-4.


Cerebellar-hippocampal volume associations with behavioral outcomes following tDCS modulation.

Magalhaes T, Maldonado T, Jackson T, Hicks T, Herrejon I, Rezende T Brain Imaging Behav. 2025; .

PMID: 39904871 DOI: 10.1007/s11682-025-00975-1.


Network structure influences the strength of learned neural representations.

Kahn A, Szymula K, Loman S, Haggerty E, Nyema N, Aguirre G Nat Commun. 2025; 16(1):994.

PMID: 39856034 PMC: 11759951. DOI: 10.1038/s41467-024-55459-5.


Brain tumor enhancement prediction from pre-contrast conventional weighted images using synthetic multiparametric mapping and generative artificial intelligence.

Moya-Saez E, de Luis-Garcia R, Nunez-Gonzalez L, Alberola-Lopez C, Hernandez-Tamames J Quant Imaging Med Surg. 2025; 15(1):42-54.

PMID: 39839033 PMC: 11744120. DOI: 10.21037/qims-24-721.