» Articles » PMID: 22196734

SAM68 Regulates Neuronal Activity-dependent Alternative Splicing of Neurexin-1

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2011 Dec 27
PMID 22196734
Citations 168
Authors
Affiliations
Soon will be listed here.
Abstract

The assembly of synapses and neuronal circuits relies on an array of molecular recognition events and their modification by neuronal activity. Neurexins are a highly polymorphic family of synaptic receptors diversified by extensive alternative splicing. Neurexin variants exhibit distinct isoform-specific biochemical interactions and synapse assembly functions, but the mechanisms governing splice isoform choice are not understood. We demonstrate that Nrxn1 alternative splicing is temporally and spatially controlled in the mouse brain. Neuronal activity triggers a shift in Nrxn1 splice isoform choice via calcium/calmodulin-dependent kinase IV signaling. Activity-dependent alternative splicing of Nrxn1 requires the KH-domain RNA-binding protein SAM68 that associates with RNA response elements in the Nrxn1 pre-mRNA. Our findings uncover SAM68 as a key regulator of dynamic control of Nrxn1 molecular diversity and activity-dependent alternative splicing in the central nervous system.

Citing Articles

RBM4-mediated intron excision of Hsf1 induces BDNF for cerebellar foliation.

Shen C, Tsai Y, Chou S, Chang Y, Tarn W Commun Biol. 2024; 7(1):1712.

PMID: 39738787 PMC: 11685446. DOI: 10.1038/s42003-024-07328-6.


MBL-1/Muscleblind regulates neuronal differentiation and controls the splicing of a terminal selector in Caenorhabditis elegans.

Lee H, Lim H, He H, Lau C, Zheng C PLoS Genet. 2024; 20(10):e1011276.

PMID: 39423233 PMC: 11524483. DOI: 10.1371/journal.pgen.1011276.


A comparison of basal and activity-dependent exon splicing in cortical-patterned neurons of human and mouse origin.

Dando O, McQueen J, Burr K, Kind P, Chandran S, Hardingham G Front Mol Neurosci. 2024; 17:1392408.

PMID: 39268251 PMC: 11390650. DOI: 10.3389/fnmol.2024.1392408.


Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes.

Moakley D, Campbell M, Anglada-Girotto M, Feng H, Califano A, Au E bioRxiv. 2024; .

PMID: 38915499 PMC: 11195221. DOI: 10.1101/2024.06.13.597128.


Epigenetic control of adaptive or homeostatic splicing during interval-training activities.

Liu L, Nguyen H, Das U, Ogunsola S, Yu J, Lei L Nucleic Acids Res. 2024; 52(12):7211-7224.

PMID: 38661216 PMC: 11229381. DOI: 10.1093/nar/gkae311.


References
1.
Rozic-Kotliroff G, Zisapel N . Ca2+ -dependent splicing of neurexin IIalpha. Biochem Biophys Res Commun. 2006; 352(1):226-30. DOI: 10.1016/j.bbrc.2006.11.008. View

2.
Matter N, Herrlich P, Konig H . Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature. 2002; 420(6916):691-5. DOI: 10.1038/nature01153. View

3.
Rossi P, De Filippi G, Armano S, Taglietti V, DAngelo E . The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum. J Neurosci. 1998; 18(10):3537-47. PMC: 6793145. View

4.
Valacca C, Bonomi S, Buratti E, Pedrotti S, Baralle F, Sette C . Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J Cell Biol. 2010; 191(1):87-99. PMC: 2953442. DOI: 10.1083/jcb.201001073. View

5.
Batsche E, Yaniv M, Muchardt C . The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2005; 13(1):22-9. DOI: 10.1038/nsmb1030. View