» Articles » PMID: 22195142

Extracting Temporal Constraints from Clinical Research Eligibility Criteria Using Conditional Random Fields

Overview
Date 2011 Dec 24
PMID 22195142
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Temporal constraints are present in 38% of clinical research eligibility criteria and are crucial for screening patients. However, eligibility criteria are often written as free text, which is not amenable for computer processing. In this paper, we present an ontology-based approach to extracting temporal information from clinical research eligibility criteria. We generated temporal labels using a frame-based temporal ontology. We manually annotated 150 free-text eligibility criteria using the temporal labels and trained a parser using Conditional Random Fields (CRFs) to automatically extract temporal expressions from eligibility criteria. An evaluation of an additional 60 randomly selected eligibility criteria using manual review achieved an overall precision of 83%, a recall of 79%, and an F-score of 80%. We illustrate the application of temporal extraction with the use cases of question answering and free-text criteria querying.

Citing Articles

Hybrid natural language processing tool for semantic annotation of medical texts in Spanish.

Campillos-Llanos L, Valverde-Mateos A, Capllonch-Carrion A BMC Bioinformatics. 2025; 26(1):7.

PMID: 39780059 PMC: 11708069. DOI: 10.1186/s12859-024-05949-6.


An analysis of published study designs in PubMed prisoner health abstracts from 1963 to 2023: a text mining study.

Karystianis G, Lukmanjaya W, Buchan I, Simpson P, Ginnivan N, Nenadic G BMC Med Res Methodol. 2024; 24(1):68.

PMID: 38494501 PMC: 10944606. DOI: 10.1186/s12874-024-02186-6.


Text Classification of Cancer Clinical Trial Eligibility Criteria.

Yang Y, Jayaraj S, Ludmir E, Roberts K AMIA Annu Symp Proc. 2024; 2023:1304-1313.

PMID: 38222417 PMC: 10785908.


Data extraction methods for systematic review (semi)automation: Update of a living systematic review.

Schmidt L, Finnerty Mutlu A, Elmore R, McGuinness L, Olorisade B, Thomas J F1000Res. 2023; 10:401.

PMID: 34408850 PMC: 8361807. DOI: 10.12688/f1000research.51117.2.


Automated classification of clinical trial eligibility criteria text based on ensemble learning and metric learning.

Zeng K, Xu Y, Lin G, Liang L, Hao T BMC Med Inform Decis Mak. 2021; 21(Suppl 2):129.

PMID: 34330259 PMC: 8323220. DOI: 10.1186/s12911-021-01492-z.


References
1.
Luo Z, Duffy R, Johnson S, Weng C . Corpus-based Approach to Creating a Semantic Lexicon for Clinical Research Eligibility Criteria from UMLS. Summit Transl Bioinform. 2011; 2010:26-30. PMC: 3041551. View

2.
Zhou L, Melton G, Parsons S, Hripcsak G . A temporal constraint structure for extracting temporal information from clinical narrative. J Biomed Inform. 2005; 39(4):424-39. DOI: 10.1016/j.jbi.2005.07.002. View

3.
Zhou L, Parsons S, Hripcsak G . The evaluation of a temporal reasoning system in processing clinical discharge summaries. J Am Med Inform Assoc. 2007; 15(1):99-106. PMC: 2274869. DOI: 10.1197/jamia.M2467. View

4.
Tu S, Peleg M, Carini S, Bobak M, Ross J, Rubin D . A practical method for transforming free-text eligibility criteria into computable criteria. J Biomed Inform. 2010; 44(2):239-50. PMC: 3129371. DOI: 10.1016/j.jbi.2010.09.007. View

5.
Stein A, Musen M, Shahar Y . Knowledge acquisition for temporal abstraction. Proc AMIA Annu Fall Symp. 1996; :204-8. PMC: 2233051. View