» Articles » PMID: 22171033

Active Action Potential Propagation but Not Initiation in Thalamic Interneuron Dendrites

Overview
Journal J Neurosci
Specialty Neurology
Date 2011 Dec 16
PMID 22171033
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K-based action potentials can evoke calcium transients in dendrites via local active conductances, making the backpropagating action potential a candidate for dendritic neurotransmitter release. In this study, we used high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation rapidly and actively backpropagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid backpropagation into the dendritic arbor depended upon voltage-gated sodium and tetraethylammonium chloride-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then backpropagate with high fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments.

Citing Articles

Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features.

Mullner F, Roska B Neuron. 2024; 112(16):2765-2782.e9.

PMID: 38917805 PMC: 11348917. DOI: 10.1016/j.neuron.2024.06.001.


The type of inhibition provided by thalamic interneurons alters the input selectivity of thalamocortical neurons.

Djama D, Zirpel F, Ye Z, Moore G, Chue C, Edge C Curr Res Neurobiol. 2024; 6:100130.

PMID: 38694514 PMC: 11061260. DOI: 10.1016/j.crneur.2024.100130.


Intracellular Calcium Responses Encode Action Potential Firing in Spinal Cord Lamina I Neurons.

Harding E, Boivin B, Salter M J Neurosci. 2020; 40(23):4439-4456.

PMID: 32341097 PMC: 7275865. DOI: 10.1523/JNEUROSCI.0206-20.2020.


Visual Functions of the Thalamus.

Usrey W, Alitto H Annu Rev Vis Sci. 2017; 1:351-371.

PMID: 28217740 PMC: 5310631. DOI: 10.1146/annurev-vision-082114-035920.


Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus.

Jager P, Ye Z, Yu X, Zagoraiou L, Prekop H, Partanen J Nat Commun. 2016; 7:13579.

PMID: 27929058 PMC: 5155147. DOI: 10.1038/ncomms13579.


References
1.
Williams S, Stuart G . Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci. 2000; 20(4):1307-17. PMC: 6772380. View

2.
Acuna-Goycolea C, Brenowitz S, Regehr W . Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron. 2008; 57(3):420-31. DOI: 10.1016/j.neuron.2007.12.022. View

3.
Djurisic M, Antic S, Chen W, Zecevic D . Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci. 2004; 24(30):6703-14. PMC: 6729725. DOI: 10.1523/JNEUROSCI.0307-04.2004. View

4.
Blitz D, Regehr W . Timing and specificity of feed-forward inhibition within the LGN. Neuron. 2005; 45(6):917-28. DOI: 10.1016/j.neuron.2005.01.033. View

5.
Isaacson J, Strowbridge B . Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron. 1998; 20(4):749-61. DOI: 10.1016/s0896-6273(00)81013-2. View