» Articles » PMID: 22167800

Structures of RNA 3'-phosphate Cyclase Bound to ATP Reveal the Mechanism of Nucleotidyl Transfer and Metal-assisted Catalysis

Overview
Specialty Science
Date 2011 Dec 15
PMID 22167800
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

RNA 3'-phosphate cyclase (RtcA) synthesizes RNA 2',3' cyclic phosphate ends via three steps: reaction with ATP to form a covalent RtcA-(histidinyl-Nε)-AMP intermediate; transfer of adenylate to an RNA 3'-phosphate to form RNA(3')pp(5')A; and attack of the vicinal O2' on the 3'-phosphorus to form a 2',3' cyclic phosphate and release AMP. Here we report the crystal structures of RtcA•ATP, RtcA•ATP•Mn(2+), and RtcA•ATP•Co(2+) substrate complexes and an RtcA•AMP product complex. Together with the structures of RtcA apoenzyme and the covalent RtcA-AMP intermediate, they illuminate the mechanism of nucleotidyl transfer, especially the stereochemical transitions at the AMP phosphate, the critical role of the metal in orienting the PP(i) leaving group of ATP during step 1, and the protein conformational switches that accompany substrate binding and product release. The octahedral metal complex of RtcA•ATP•Mn(2+) includes nonbridging oxygens from each of the ATP phosphates, two waters, and Glu14 as the sole RtcA component. Whereas the RtcA adenylylation step is metal-catalyzed, the subsequent steps in the cyclization pathway are metal-independent.

Citing Articles

The expanding field of non-canonical RNA capping: new enzymes and mechanisms.

Wiedermannova J, Julius C, Yuzenkova Y R Soc Open Sci. 2021; 8(5):201979.

PMID: 34017598 PMC: 8131947. DOI: 10.1098/rsos.201979.


The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in Escherichia coli.

Temmel H, Muller C, Sauert M, Vesper O, Reiss A, Popow J Nucleic Acids Res. 2016; 45(8):4708-4721.

PMID: 27789694 PMC: 5416887. DOI: 10.1093/nar/gkw1018.


Characterization of 3'-Phosphate RNA Ligase Paralogs RtcB1, RtcB2, and RtcB3 from Myxococcus xanthus Highlights DNA and RNA 5'-Phosphate Capping Activity of RtcB3.

Maughan W, Shuman S J Bacteriol. 2015; 197(22):3616-24.

PMID: 26350128 PMC: 4621082. DOI: 10.1128/JB.00631-15.


DNA3'pp5'G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition.

Chauleau M, Jacewicz A, Shuman S Nucleic Acids Res. 2015; 43(12):6075-83.

PMID: 26007660 PMC: 4499129. DOI: 10.1093/nar/gkv501.


Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

Desai K, Bingman C, Cheng C, Phillips Jr G, Raines R RNA. 2014; 20(10):1560-6.

PMID: 25161314 PMC: 4174438. DOI: 10.1261/rna.045823.114.


References
1.
Filipowicz W, Strugala K, Konarska M, Shatkin A . Cyclization of RNA 3'-terminal phosphate by cyclase from HeLa cells proceeds via formation of N(3')pp(5')A activated intermediate. Proc Natl Acad Sci U S A. 1985; 82(5):1316-20. PMC: 397251. DOI: 10.1073/pnas.82.5.1316. View

2.
Tanaka N, Smith P, Shuman S . Structure of the RNA 3'-phosphate cyclase-adenylate intermediate illuminates nucleotide specificity and covalent nucleotidyl transfer. Structure. 2010; 18(4):449-57. PMC: 2858066. DOI: 10.1016/j.str.2010.01.016. View

3.
Konarska M, Filipowicz W, Gross H . RNA ligation via 2'-phosphomonoester, 3'5'-phosphodiester linkage: requirement of 2',3'-cyclic phosphate termini and involvement of a 5'-hydroxyl polynucleotide kinase. Proc Natl Acad Sci U S A. 1982; 79(5):1474-8. PMC: 345996. DOI: 10.1073/pnas.79.5.1474. View

4.
Genschik P, Drabikowski K, Filipowicz W . Characterization of the Escherichia coli RNA 3'-terminal phosphate cyclase and its sigma54-regulated operon. J Biol Chem. 1998; 273(39):25516-26. DOI: 10.1074/jbc.273.39.25516. View

5.
Amitsur M, Levitz R, Kaufmann G . Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 1987; 6(8):2499-503. PMC: 553660. DOI: 10.1002/j.1460-2075.1987.tb02532.x. View