» Articles » PMID: 22157746

CPEB2-eEF2 Interaction Impedes HIF-1α RNA Translation

Overview
Journal EMBO J
Date 2011 Dec 14
PMID 22157746
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Translation of mRNA into protein proceeds in three phases: initiation, elongation, and termination. Regulated translation allows the prompt production of selective proteins in response to physiological needs and is often controlled by sequence-specific RNA-binding proteins that function at initiation. Whether the elongation phase of translation can be modulated individually by trans-acting factors to synthesize polypeptides at variable rates remains to be determined. Here, we demonstrate that the RNA-binding protein, cytoplasmic polyadenylation element binding protein (CPEB)2, interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-triggered GTP hydrolysis in vitro and slow down peptide elongation of CPEB2-bound RNA in vivo. The interaction of CPEB2 with eEF2 downregulates HIF-1α RNA translation under normoxic conditions; however, when cells encounter oxidative stress, CPEB2 dissociates from HIF-1α RNA, leading to rapid synthesis of HIF-1α for hypoxic adaptation. This study delineates the molecular mechanism of CPEB2-repressed translation and presents a unique model for controlling transcript-selective translation at elongation.

Citing Articles

Elongation factor 2 in cancer: a promising therapeutic target in protein translation.

Jia X, Huang C, Liu F, Dong Z, Liu K Cell Mol Biol Lett. 2024; 29(1):156.

PMID: 39707196 PMC: 11660736. DOI: 10.1186/s11658-024-00674-7.


Insights into the Mode and Mechanism of Interactions Between RNA and RNA-Binding Proteins.

Fang Y, Liu X, Liu Y, Xu N Int J Mol Sci. 2024; 25(21).

PMID: 39518890 PMC: 11545484. DOI: 10.3390/ijms252111337.


Stress-Induced Eukaryotic Translational Regulatory Mechanisms.

Mir D, Ma Z, Horrocks J, Rogers A J Clin Med Sci. 2024; 8(2).

PMID: 39364184 PMC: 11448810.


CPEB2-activated Prdm16 translation promotes brown adipocyte function and prevents obesity.

Lu W, Chen H, King P, Peng C, Huang Y Mol Metab. 2024; 89:102034.

PMID: 39305947 PMC: 11462068. DOI: 10.1016/j.molmet.2024.102034.


PPI-hotspot for detecting protein-protein interaction hot spots from the free protein structure.

Chen Y, Sargsyan K, Wright J, Chen Y, Huang Y, Lim C Elife. 2024; 13.

PMID: 39283314 PMC: 11405013. DOI: 10.7554/eLife.96643.


References
1.
Nygard O, Nilsson A, Carlberg U, Nilsson L, Amons R . Phosphorylation regulates the activity of the eEF-2-specific Ca(2+)- and calmodulin-dependent protein kinase III. J Biol Chem. 1991; 266(25):16425-30. View

2.
Halic M, Becker T, Pool M, Spahn C, Grassucci R, Frank J . Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature. 2004; 427(6977):808-14. DOI: 10.1038/nature02342. View

3.
Thomas J, Johannes G . Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA. 2007; 13(7):1116-31. PMC: 1894931. DOI: 10.1261/rna.534807. View

4.
Huang Y, Kan M, Lin C, Richter J . CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 2006; 25(20):4865-76. PMC: 1618119. DOI: 10.1038/sj.emboj.7601322. View

5.
Richter J, Sonenberg N . Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005; 433(7025):477-80. DOI: 10.1038/nature03205. View