» Articles » PMID: 22151872

Detection of Interaction Articles and Experimental Methods in Biomedical Literature

Overview
Publisher Biomed Central
Specialty Biology
Date 2011 Dec 14
PMID 22151872
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Background: This article describes the approaches taken by the OntoGene group at the University of Zurich in dealing with two tasks of the BioCreative III competition: classification of articles which contain curatable protein-protein interactions (PPI-ACT) and extraction of experimental methods (PPI-IMT).

Results: Two main achievements are described in this paper: (a) a system for document classification which crucially relies on the results of an advanced pipeline of natural language processing tools; (b) a system which is capable of detecting all experimental methods mentioned in scientific literature, and listing them with a competitive ranking (AUC iP/R > 0.5).

Conclusions: The results of the BioCreative III shared evaluation clearly demonstrate that significant progress has been achieved in the domain of biomedical text mining in the past few years. Our own contribution, together with the results of other participants, provides evidence that natural language processing techniques have become by now an integral part of advanced text mining approaches.

Citing Articles

An effective biomedical document classification scheme in support of biocuration: addressing class imbalance.

Jiang X, Ringwald M, Blake J, Arighi C, Zhang G, Shatkay H Database (Oxford). 2019; 2019.

PMID: 31032839 PMC: 6482935. DOI: 10.1093/database/baz045.


Automatic query generation using word embeddings for retrieving passages describing experimental methods.

Aydin F, Husunbeyi Z, Ozgur A Database (Oxford). 2017; 2017.

PMID: 28077568 PMC: 5225401. DOI: 10.1093/database/baw166.


Detection and categorization of bacteria habitats using shallow linguistic analysis.

Karadeniz I, Ozgur A BMC Bioinformatics. 2015; 16 Suppl 10:S5.

PMID: 26201262 PMC: 4511461. DOI: 10.1186/1471-2105-16-S10-S5.


OntoGene web services for biomedical text mining.

Rinaldi F, Clematide S, Marques H, Ellendorff T, Romacker M, Rodriguez-Esteban R BMC Bioinformatics. 2014; 15 Suppl 14:S6.

PMID: 25472638 PMC: 4255746. DOI: 10.1186/1471-2105-15-S14-S6.


CoIN: a network analysis for document triage.

Hsu Y, Kao H Database (Oxford). 2013; 2013:bat076.

PMID: 24218542 PMC: 3822784. DOI: 10.1093/database/bat076.


References
1.
Rinaldi F, Schneider G, Kaljurand K, Clematide S, Vachon T, Romacker M . OntoGene in BioCreative II.5. IEEE/ACM Trans Comput Biol Bioinform. 2010; 7(3):472-80. DOI: 10.1109/TCBB.2010.50. View

2.
Tsai R, Hung H, Dai H, Lin Y, Hsu W . Exploiting likely-positive and unlabeled data to improve the identification of protein-protein interaction articles. BMC Bioinformatics. 2008; 9 Suppl 1:S3. PMC: 2259404. DOI: 10.1186/1471-2105-9-S1-S3. View

3.
Miyao Y, Sagae K, Saetre R, Matsuzaki T, Tsujii J . Evaluating contributions of natural language parsers to protein-protein interaction extraction. Bioinformatics. 2008; 25(3):394-400. PMC: 2639072. DOI: 10.1093/bioinformatics/btn631. View

4.
. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2006; 35(Database issue):D193-7. PMC: 1669721. DOI: 10.1093/nar/gkl929. View

5.
Rinaldi F, Kappeler T, Kaljurand K, Schneider G, Klenner M, Clematide S . OntoGene in BioCreative II. Genome Biol. 2008; 9 Suppl 2:S13. PMC: 2559984. DOI: 10.1186/gb-2008-9-s2-s13. View