» Articles » PMID: 22136338

Adolescent Idiopathic Scoliosis (AIS), Environment, Exposome and Epigenetics: a Molecular Perspective of Postnatal Normal Spinal Growth and the Etiopathogenesis of AIS with Consideration of a Network Approach and Possible Implications for Medical...

Overview
Journal Scoliosis
Publisher Biomed Central
Date 2011 Dec 6
PMID 22136338
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.

Citing Articles

Incidence and Importance of Peripheral Vestibular Dysfunction in Adolescent Idiopathic Scoliosis.

Vladareanu L, Iliescu M, Andronache I, Dantes E Children (Basel). 2024; 11(6).

PMID: 38929302 PMC: 11201755. DOI: 10.3390/children11060723.


Identification of Epigenetic Biomarkers of Adolescent Idiopathic Scoliosis Progression: A Workflow to Assess Local Gene Expression.

Neri S, Assirelli E, Manzetti M, Viroli G, Ialuna M, Traversari M Int J Mol Sci. 2024; 25(10).

PMID: 38791368 PMC: 11120692. DOI: 10.3390/ijms25105329.


Etiopathogenesis of adolescent idiopathic scoliosis (AIS): Role of genetic and environmental factors.

Aulia T, Djufri D, Gatam L, Yaman A Narra J. 2024; 3(3):e217.

PMID: 38455619 PMC: 10919743. DOI: 10.52225/narra.v3i3.217.


Knowledge mapping of idiopathic scoliosis genes and research hotspots (2002-2022): a bibliometric analysis.

Ru L, Zheng H, Lian W, Zhao S, Fan Q Front Pediatr. 2023; 11:1177983.

PMID: 38111628 PMC: 10725947. DOI: 10.3389/fped.2023.1177983.


Associations of physical activity and screen time with adolescent idiopathic scoliosis.

Zhu L, Ru S, Wang W, Dou Q, Li Y, Guo L Environ Health Prev Med. 2023; 28:55.

PMID: 37766541 PMC: 10569969. DOI: 10.1265/ehpm.23-00004.


References
1.
Hanson M, Low F, Gluckman P . Epigenetic epidemiology: the rebirth of soft inheritance. Ann Nutr Metab. 2011; 58 Suppl 2:8-15. DOI: 10.1159/000328033. View

2.
Machida M . Cause of idiopathic scoliosis. Spine (Phila Pa 1976). 2000; 24(24):2576-83. DOI: 10.1097/00007632-199912150-00004. View

3.
Szalay E, Bosch P, Schwend R, Buggie B, Tandberg D, Sherman F . Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976). 2008; 33(7):802-6. DOI: 10.1097/BRS.0b013e318169578f. View

4.
Chu W, Lam W, Ng B, Tze-Ping L, Lee K, Guo X . Relative shortening and functional tethering of spinal cord in adolescent scoliosis - Result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE. Scoliosis. 2008; 3:8. PMC: 2474583. DOI: 10.1186/1748-7161-3-8. View

5.
Kouzarides T . Chromatin modifications and their function. Cell. 2007; 128(4):693-705. DOI: 10.1016/j.cell.2007.02.005. View