» Articles » PMID: 22134225

FLAMEnGO: a Fuzzy Logic Approach for Methyl Group Assignment Using NOESY and Paramagnetic Relaxation Enhancement Data

Overview
Journal J Magn Reson
Publisher Elsevier
Date 2011 Dec 3
PMID 22134225
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Building on a recent method by Matthews and co-workers [1], we developed a new and efficient algorithm to assign methyl resonances from sparse and ambiguous NMR data. The new algorithm (FLAMEnGO: Fuzzy Logic Assignment of MEthyl GrOups) uses Monte Carlo sampling in conjunction with fuzzy logic to obtain the assignment of methyl resonances at high fidelity. Furthermore, we demonstrate that the inclusion of paramagnetic relaxation enhancement (PRE) data in the assignment strategy increases the percentage of correct assignments with sparse NOE data. Using synthetic tests and experimental data we show that this new approach provides up to ∼80% correct assignments with only 30% of methyl-methyl NOE data. In the experimental case of ubiquitin, PRE data from two spin labeled sites improve the percentage of assigned methyl groups up to ∼91%. This new strategy promises to further expand methyl group NMR spectroscopy to very large macromolecular systems.

Citing Articles

Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein.

Mallis R, Lee J, van den Berg A, Brazin K, Viennet T, Zmuda J Protein Sci. 2024; 33(4):e4950.

PMID: 38511503 PMC: 10955624. DOI: 10.1002/pro.4950.


Synthesis of C-methyl-labeled amino acids and their incorporation into proteins in mammalian cells.

Borgini M, Wieteska L, Hinck C, Krzysiak T, Hinck A, Wipf P Org Biomol Chem. 2023; 21(46):9216-9229.

PMID: 37964666 PMC: 10825848. DOI: 10.1039/d3ob01320k.


Automatic structure-based NMR methyl resonance assignment in large proteins.

Pritisanac I, Wurz J, Alderson T, Guntert P Nat Commun. 2019; 10(1):4922.

PMID: 31664028 PMC: 6820720. DOI: 10.1038/s41467-019-12837-8.


Simultaneous detection of intra- and inter-molecular paramagnetic relaxation enhancements in protein complexes.

Olivieri C, Veliparambil Subrahmanian M, Xia Y, Kim J, Porcelli F, Veglia G J Biomol NMR. 2018; 70(3):133-140.

PMID: 29396770 PMC: 6029865. DOI: 10.1007/s10858-018-0165-6.


Determination of ligand binding modes in weak protein-ligand complexes using sparse NMR data.

Mohanty B, Williams M, Doak B, Vazirani M, Ilyichova O, Wang G J Biomol NMR. 2016; 66(3):195-208.

PMID: 27778134 DOI: 10.1007/s10858-016-0067-4.


References
1.
Tugarinov V, Kay L . Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc. 2003; 125(19):5701-6. DOI: 10.1021/ja021452+. View

2.
Gelis I, Bonvin A, Keramisanou D, Koukaki M, Gouridis G, Karamanou S . Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell. 2007; 131(4):756-69. PMC: 2170882. DOI: 10.1016/j.cell.2007.09.039. View

3.
Sahakyan A, Vranken W, Cavalli A, Vendruscolo M . Structure-based prediction of methyl chemical shifts in proteins. J Biomol NMR. 2011; 50(4):331-46. DOI: 10.1007/s10858-011-9524-2. View

4.
Amero C, Dura M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin M . A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR. 2011; 50(3):229-36. DOI: 10.1007/s10858-011-9513-5. View

5.
Dubois D, Prade H . An introduction to fuzzy systems. Clin Chim Acta. 1998; 270(1):1-29. View