» Articles » PMID: 22125339

Dielectric Boundary Forces in Numerical Poisson-Boltzmann Methods: Theory and Numerical Strategies

Overview
Journal Chem Phys Lett
Date 2011 Nov 30
PMID 22125339
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Continuum modeling of electrostatic interactions based upon the numerical solutions of the Poisson-Boltzmann equation has been widely adopted in biomolecular applications. To extend their applications to molecular dynamics and energy minimization, robust and efficient methodologies to compute solvation forces must be developed. In this study, we have first reviewed the theory for the computation of dielectric boundary forces based on the definition of the Maxwell stress tensor. This is followed by a new formulation of the dielectric boundary force suitable for the finite-difference Poisson-Boltzmann methods. We have validated the new formulation with idealized analytical systems and realistic molecular systems.

Citing Articles

Calculation of solvation force in molecular dynamics simulation by deep-learning method.

Liao J, Wu M, Gao J, Chen C Biophys J. 2024; 123(17):2830-2838.

PMID: 38444159 PMC: 11393703. DOI: 10.1016/j.bpj.2024.02.029.


Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.

Qi R, Luo R J Chem Inf Model. 2018; 59(1):409-420.

PMID: 30550277 PMC: 6430105. DOI: 10.1021/acs.jcim.8b00761.


Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents.

Chakravorty A, Jia Z, Peng Y, Tajielyato N, Wang L, Alexov E Front Mol Biosci. 2018; 5:25.

PMID: 29637074 PMC: 5881404. DOI: 10.3389/fmolb.2018.00025.


Numerical interpretation of molecular surface field in dielectric modeling of solvation.

Wang C, Xiao L, Luo R J Comput Chem. 2017; 38(14):1057-1070.

PMID: 28318096 PMC: 5464005. DOI: 10.1002/jcc.24782.


DelPhiForce, a tool for electrostatic force calculations: Applications to macromolecular binding.

Li L, Chakravorty A, Alexov E J Comput Chem. 2017; 38(9):584-593.

PMID: 28130775 PMC: 5315605. DOI: 10.1002/jcc.24715.


References
1.
Case D, Cheatham 3rd T, Darden T, Gohlke H, Luo R, Merz Jr K . The Amber biomolecular simulation programs. J Comput Chem. 2005; 26(16):1668-88. PMC: 1989667. DOI: 10.1002/jcc.20290. View

2.
Cerutti D, Baker N, McCammon J . Solvent reaction field potential inside an uncharged globular protein: a bridge between implicit and explicit solvent models?. J Chem Phys. 2007; 127(15):155101. PMC: 2556216. DOI: 10.1063/1.2771171. View

3.
Koehl P . Electrostatics calculations: latest methodological advances. Curr Opin Struct Biol. 2006; 16(2):142-51. DOI: 10.1016/j.sbi.2006.03.001. View

4.
Gilson M . Theory of electrostatic interactions in macromolecules. Curr Opin Struct Biol. 1995; 5(2):216-23. DOI: 10.1016/0959-440x(95)80079-4. View

5.
Klapper I, Hagstrom R, Fine R, Sharp K, Honig B . Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986; 1(1):47-59. DOI: 10.1002/prot.340010109. View