» Articles » PMID: 22124152

Genetic Reevaluation of the Role of F-box Proteins in Cyclin D1 Degradation

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2011 Nov 30
PMID 22124152
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

D-type cyclins play a pivotal role in G(1)-S progression of the cell cycle, and their expression is frequently deregulated in cancer. Cyclin D1 has a half-life of only ~30 min as a result of its ubiquitylation and proteasomal degradation, with various F-box proteins, including Fbxo4, Fbxw8, Skp2, and Fbxo31, having been found to contribute to its ubiquitylation. We have now generated Fbxo4-deficient mice and found no abnormalities in these animals. Cyclin D1 accumulation was thus not observed in Fbxo4(-/-) mouse tissues. The half-life of cyclin D1 in mouse embryonic fibroblasts (MEFs) prepared from Fbxo4(-/-), Fbxw8(-/-), and Fbxo4(-/-); Fbxw8(-/-) mice also did not differ from that in wild-type MEFs. Additional depletion of Skp2 and Fbxo31 in Fbxo4(-/-); Fbxw8(-/-) MEFs by RNA interference did not affect cyclin D1 stability. Although Fbxo31 depletion in MEFs increased cyclin D1 abundance, this effect appeared attributable to upregulation of cyclin D1 mRNA. Furthermore, abrogation of the function of the Skp1-Cul1-F-box protein (SCF) complex or the anaphase-promoting complex/cyclosome (APC/C) complexes did not alter the half-life of cyclin D1, whereas cyclin D1 degradation was dependent largely on proteasome activity. Our genetic analyses thus do not support a role for any of the four F-box proteins examined in cyclin D1 degradation during normal cell cycle progression. They suggest the existence of other ubiquitin ligases that target cyclin D1 for proteolysis.

Citing Articles

C-terminal amides mark proteins for degradation via SCF-FBXO31.

Muhar M, Farnung J, Cernakova M, Hofmann R, Henneberg L, Pfleiderer M Nature. 2025; 638(8050):519-527.

PMID: 39880951 PMC: 11821526. DOI: 10.1038/s41586-024-08475-w.


SKP1-CUL1-F-box: Key molecular targets affecting disease progression.

Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y FASEB J. 2025; 39(2):e70326.

PMID: 39812503 PMC: 11734646. DOI: 10.1096/fj.202402816RR.


Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties.

Pandya J, Musyaju S, Modi H, Okada-Rising S, Bailey Z, Scultetus A J Transl Med. 2024; 22(1):167.

PMID: 38365798 PMC: 10874030. DOI: 10.1186/s12967-024-04908-2.


E3 ligase MG53 suppresses tumor growth by degrading cyclin D1.

Fang M, Wu H, Pei Y, Zhang Y, Gao X, He Y Signal Transduct Target Ther. 2023; 8(1):263.

PMID: 37414783 PMC: 10326024. DOI: 10.1038/s41392-023-01458-9.


The SREBP-dependent regulation of cyclin D1 coordinates cell proliferation and lipid synthesis.

Aldaalis A, Bengoechea-Alonso M, Ericsson J Front Oncol. 2022; 12:942386.

PMID: 36091143 PMC: 9451027. DOI: 10.3389/fonc.2022.942386.


References
1.
Xu X, Sarikas A, Dias-Santagata D, Dolios G, Lafontant P, Tsai S . The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 2008; 30(4):403-14. PMC: 2633441. DOI: 10.1016/j.molcel.2008.03.009. View

2.
Shinozaki H, Ozawa S, Ando N, Tsuruta H, Terada M, Ueda M . Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res. 1996; 2(7):1155-61. View

3.
Blain S . Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle. 2008; 7(7):892-8. DOI: 10.4161/cc.7.7.5637. View

4.
Wang T, Cardiff R, Zukerberg L, Lees E, Arnold A, SCHMIDT E . Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature. 1994; 369(6482):669-71. DOI: 10.1038/369669a0. View

5.
Ang X, Harper J . SCF-mediated protein degradation and cell cycle control. Oncogene. 2005; 24(17):2860-70. DOI: 10.1038/sj.onc.1208614. View