» Articles » PMID: 22110863

Colloidal Quantum Dot Light-emitting Devices

Overview
Journal Nano Rev
Specialty Biotechnology
Date 2011 Nov 24
PMID 22110863
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

Citing Articles

Quantum Dots for Resistive Switching Memory and Artificial Synapse.

Kim G, Park S, Kim S Nanomaterials (Basel). 2024; 14(19).

PMID: 39404302 PMC: 11478683. DOI: 10.3390/nano14191575.


High-Performance Red Transparent Quantum Dot Light-Emitting Diodes via Fully Solution-Processed MXene/Ag NWs Top Electrode.

Su D, Ding T, Gao P, Liu H, Song Y, Yuan G ACS Appl Mater Interfaces. 2024; 16(40):54189-54198.

PMID: 39325447 PMC: 11472265. DOI: 10.1021/acsami.4c11431.


Deposition of CdSe Nanocrystals in Highly Porous SiO Matrices-In Situ Growth vs. Infiltration Methods.

Baruah R, Dilshad M, Diegel M, Dellith J, Plentz J, Undisz A Materials (Basel). 2024; 17(17).

PMID: 39274769 PMC: 11396508. DOI: 10.3390/ma17174379.


Highly Efficient All-Solution-Processed Quantum Dot Light-Emitting Diodes Using MoO Nanoparticle Hole Injection Layer.

Yang J, Jang G, Kim S, Chae Y, Lee K, Moon D Nanomaterials (Basel). 2023; 13(16).

PMID: 37630909 PMC: 10459627. DOI: 10.3390/nano13162324.


A Review on Multiple I-III-VI Quantum Dots: Preparation and Enhanced Luminescence Properties.

Chen T, Chen Y, Li Y, Liang M, Wu W, Wang Y Materials (Basel). 2023; 16(14).

PMID: 37512312 PMC: 10384050. DOI: 10.3390/ma16145039.


References
1.
Garcia-Santamaria F, Chen Y, Vela J, Schaller R, Hollingsworth J, Klimov V . Suppressed auger recombination in "giant" nanocrystals boosts optical gain performance. Nano Lett. 2009; 9(10):3482-8. PMC: 2897714. DOI: 10.1021/nl901681d. View

2.
Anikeeva P, Halpert J, Bawendi M, Bulovic V . Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Lett. 2007; 7(8):2196-200. DOI: 10.1021/nl0703424. View

3.
Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J, Dubertret B . Towards non-blinking colloidal quantum dots. Nat Mater. 2008; 7(8):659-64. DOI: 10.1038/nmat2222. View

4.
Wood V, Panzer M, Caruge J, Halpert J, Bawendi M, Bulovic V . Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 2009; 10(1):24-9. DOI: 10.1021/nl902425g. View

5.
Kovalenko M, Scheele M, Talapin D . Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science. 2009; 324(5933):1417-20. DOI: 10.1126/science.1170524. View