» Articles » PMID: 22100448

A Bayesian View on Cryo-EM Structure Determination

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2011 Nov 22
PMID 22100448
Citations 458
Authors
Affiliations
Soon will be listed here.
Abstract

Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures.

Citing Articles

Structural basis of Nipah virus RNA synthesis.

Sala F, Ditter K, Dybkov O, Urlaub H, Hillen H Nat Commun. 2025; 16(1):2261.

PMID: 40050611 PMC: 11885841. DOI: 10.1038/s41467-025-57219-5.


Cryo-EM heterogeneity analysis using regularized covariance estimation and kernel regression.

Gilles M, Singer A Proc Natl Acad Sci U S A. 2025; 122(9):e2419140122.

PMID: 40009640 PMC: 11892586. DOI: 10.1073/pnas.2419140122.


Balanced plant helper NLR activation by a modified host protein complex.

Huang S, Wang J, Song R, Jia A, Xiao Y, Sun Y Nature. 2025; 639(8054):447-455.

PMID: 39939760 DOI: 10.1038/s41586-024-08521-7.


Biochemical and structural bases for talin ABSs-F-actin interactions.

Biertumpfel C, Yamada Y, Vasquez-Montes V, Truong T, Cada A, Mizuno N Proc Natl Acad Sci U S A. 2025; 122(6):e2405922122.

PMID: 39903122 PMC: 11831117. DOI: 10.1073/pnas.2405922122.


Aerolysin Nanopore Structures Revealed at High Resolution in a Lipid Environment.

Anton J, Iacovache I, Bada Juarez J, Abriata L, Perrin L, Cao C J Am Chem Soc. 2025; 147(6):4984-4992.

PMID: 39900531 PMC: 11826888. DOI: 10.1021/jacs.4c14288.


References
1.
Ludtke S, Baldwin P, Chiu W . EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol. 1999; 128(1):82-97. DOI: 10.1006/jsbi.1999.4174. View

2.
Sindelar C, Grigorieff N . An adaptation of the Wiener filter suitable for analyzing images of isolated single particles. J Struct Biol. 2011; 176(1):60-74. PMC: 3184790. DOI: 10.1016/j.jsb.2011.06.010. View

3.
Iizuka R, Yoshida T, Shomura Y, Miki K, Maruyama T, Odaka M . ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin. J Biol Chem. 2003; 278(45):44959-65. DOI: 10.1074/jbc.M305484200. View

4.
Stagg S, Lander G, Pulokas J, Fellmann D, Cheng A, Quispe J . Automated cryoEM data acquisition and analysis of 284742 particles of GroEL. J Struct Biol. 2006; 155(3):470-81. DOI: 10.1016/j.jsb.2006.04.005. View

5.
Pipe J, Menon P . Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med. 1999; 41(1):179-86. DOI: 10.1002/(sici)1522-2594(199901)41:1<179::aid-mrm25>3.0.co;2-v. View