» Articles » PMID: 22080505

PSCDB: a Database for Protein Structural Change Upon Ligand Binding

Overview
Specialty Biochemistry
Date 2011 Nov 15
PMID 22080505
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Proteins are flexible molecules that undergo structural changes to function. The Protein Data Bank contains multiple entries for identical proteins determined under different conditions, e.g. with and without a ligand molecule, which provides important information for understanding the structural changes related to protein functions. We gathered 839 protein structural pairs of ligand-free and ligand-bound states from monomeric or homo-dimeric proteins, and constructed the Protein Structural Change DataBase (PSCDB). In the database, we focused on whether the motions were coupled with ligand binding. As a result, the protein structural changes were classified into seven classes, i.e. coupled domain motion (59 structural changes), independent domain motion (70), coupled local motion (125), independent local motion (135), burying ligand motion (104), no significant motion (311) and other type motion (35). PSCDB provides lists of each class. On each entry page, users can view detailed information about the motion, accompanied by a morphing animation of the structural changes. PSCDB is available at http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/.

Citing Articles

Natural Language Processing Methods for the Study of Protein-Ligand Interactions.

Michels J, Bandarupalli R, Ahangar Akbari A, Le T, Xiao H, Li J J Chem Inf Model. 2025; 65(5):2191-2213.

PMID: 39993834 PMC: 11898065. DOI: 10.1021/acs.jcim.4c01907.


Natural Language Processing Methods for the Study of Protein-Ligand Interactions.

Michels J, Bandarupalli R, Ahangar Akbari A, Le T, Xiao H, Li J ArXiv. 2024; .

PMID: 39483353 PMC: 11527106.


Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids.

Wang J, Xue N, Pan W, Tu R, Li S, Zhang Y Nat Commun. 2023; 14(1):6680.

PMID: 37865661 PMC: 10590383. DOI: 10.1038/s41467-023-42431-y.


D3PM: a comprehensive database for protein motions ranging from residue to domain.

Peng C, Zhang X, Xu Z, Chen Z, Yang Y, Cai T BMC Bioinformatics. 2022; 23(1):70.

PMID: 35164668 PMC: 8845362. DOI: 10.1186/s12859-022-04595-0.


"Protein" no longer means what it used to.

Parisi G, Palopoli N, Tosatto S, Fornasari M, Tompa P Curr Res Struct Biol. 2021; 3:146-152.

PMID: 34308370 PMC: 8283027. DOI: 10.1016/j.crstbi.2021.06.002.


References
1.
Yang L, Song G, Jernigan R . How well can we understand large-scale protein motions using normal modes of elastic network models?. Biophys J. 2007; 93(3):920-9. PMC: 1913142. DOI: 10.1529/biophysj.106.095927. View

2.
Bakan A, Bahar I . The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci U S A. 2009; 106(34):14349-54. PMC: 2728110. DOI: 10.1073/pnas.0904214106. View

3.
Brylinski M, Skolnick J . What is the relationship between the global structures of apo and holo proteins?. Proteins. 2007; 70(2):363-77. DOI: 10.1002/prot.21510. View

4.
Lunin V, Li Y, Schrag J, Iannuzzi P, Cygler M, Matte A . Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol. 2004; 186(20):6915-27. PMC: 522197. DOI: 10.1128/JB.186.20.6915-6927.2004. View

5.
Rose G, Geselowitz A, Lesser G, Lee R, Zehfus M . Hydrophobicity of amino acid residues in globular proteins. Science. 1985; 229(4716):834-8. DOI: 10.1126/science.4023714. View