Lin C, Qin H, Liao Y, Chen J, Gao B
Molecules. 2024; 29(12).
PMID: 38930912
PMC: 11206848.
DOI: 10.3390/molecules29122846.
Katz D, DiMattia M, Sindhikara D, Li H, Abraham N, Leffler A
Mar Drugs. 2021; 19(7).
PMID: 34202022
PMC: 8306581.
DOI: 10.3390/md19070367.
Wen J, Adams D, Hung A
Mar Drugs. 2020; 18(7).
PMID: 32635340
PMC: 7401271.
DOI: 10.3390/md18070349.
Gulsevin A, Papke R, Horenstein N
Mini Rev Med Chem. 2020; 20(10):841-864.
PMID: 32000651
PMC: 8719523.
DOI: 10.2174/1389557520666200130105256.
Sudewi A, Susilawathi N, Mahardika B, Mahendra A, Pharmawati M, Phuong M
ACS Omega. 2019; 4(21):19483-19490.
PMID: 31763573
PMC: 6868881.
DOI: 10.1021/acsomega.9b03122.
Structural and Functional Analyses of Cone Snail Toxins.
Duque H, Dias S, Franco O
Mar Drugs. 2019; 17(6).
PMID: 31234371
PMC: 6628382.
DOI: 10.3390/md17060370.
Effects of C-Terminal Carboxylation on α-Conotoxin LsIA Interactions with Human α7 Nicotinic Acetylcholine Receptor: Molecular Simulation Studies.
Wen J, Hung A
Mar Drugs. 2019; 17(4).
PMID: 30987002
PMC: 6521072.
DOI: 10.3390/md17040206.
Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors.
Turner M, Marquart L, Phillips P, McDougal O
Toxins (Basel). 2019; 11(2).
PMID: 30781866
PMC: 6409848.
DOI: 10.3390/toxins11020113.
G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides.
Daniel J, Clark R
Toxins (Basel). 2017; 9(11).
PMID: 29144441
PMC: 5705987.
DOI: 10.3390/toxins9110372.
Nicotinic acetylcholine receptors in neuropathic and inflammatory pain.
Hone A, McIntosh J
FEBS Lett. 2017; 592(7):1045-1062.
PMID: 29030971
PMC: 5899685.
DOI: 10.1002/1873-3468.12884.
Key residues in the nicotinic acetylcholine receptor β2 subunit contribute to α-conotoxin LvIA binding.
Zhangsun D, Zhu X, Wu Y, Hu Y, Kaas Q, Craik D
J Biol Chem. 2015; 290(15):9855-62.
PMID: 25713061
PMC: 4392282.
DOI: 10.1074/jbc.M114.632646.
Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist.
Kompella S, Hung A, Clark R, Mari F, Adams D
J Biol Chem. 2014; 290(2):1039-48.
PMID: 25411242
PMC: 4294472.
DOI: 10.1074/jbc.M114.605592.
Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library.
Chang Y, Banerjee J, Dowell C, Wu J, Gyanda R, Houghten R
J Med Chem. 2014; 57(8):3511-21.
PMID: 24649848
PMC: 4358631.
DOI: 10.1021/jm500183r.
Positional scanning mutagenesis of α-conotoxin PeIA identifies critical residues that confer potency and selectivity for α6/α3β2β3 and α3β2 nicotinic acetylcholine receptors.
Hone A, Ruiz M, Scadden M, Christensen S, Gajewiak J, Azam L
J Biol Chem. 2013; 288(35):25428-25439.
PMID: 23846688
PMC: 3757205.
DOI: 10.1074/jbc.M113.482059.
The role of imidazole in peptide cyclization by transesterification: parallels to the catalytic triads of serine proteases.
Byler K, Li Y, Houghten R, Martinez-Mayorga K
Org Biomol Chem. 2013; 11(18):2979-87.
PMID: 23529282
PMC: 4106122.
DOI: 10.1039/c3ob27464k.
Short toxin-like proteins abound in Cnidaria genomes.
Tirosh Y, Linial I, Askenazi M, Linial M
Toxins (Basel). 2012; 4(11):1367-84.
PMID: 23202321
PMC: 3509713.
DOI: 10.3390/toxins4111367.
α-Conotoxin PeIA[S9H,V10A,E14N] potently and selectively blocks α6β2β3 versus α6β4 nicotinic acetylcholine receptors.
Hone A, Scadden M, Gajewiak J, Christensen S, Lindstrom J, McIntosh J
Mol Pharmacol. 2012; 82(5):972-82.
PMID: 22914547
PMC: 3477225.
DOI: 10.1124/mol.112.080853.
Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA.
Azam L, McIntosh J
J Neurochem. 2012; 122(6):1137-44.
PMID: 22774872
PMC: 3433650.
DOI: 10.1111/j.1471-4159.2012.07867.x.