Robust Estimation for the Cox Regression Model Based on Trimming
Overview
Authors
Affiliations
We propose a robust Cox regression model with outliers. The model is fit by trimming the smallest contributions to the partial likelihood. To do so, we implement a Metropolis-type maximization routine, and show its convergence to a global optimum. We discuss global robustness properties of the approach, which is illustrated and compared through simulations. We finally fit the model on an original and on a benchmark data set.
Penalized weighted proportional hazards model for robust variable selection and outlier detection.
Luo B, Gao X, Halabi S Stat Med. 2022; 41(17):3398-3420.
PMID: 35581736 PMC: 9283382. DOI: 10.1002/sim.9424.
An Efficient Algorithm for the Detection of Outliers in Mislabeled Omics Data.
Sun H, Wang J, Zhang Z, Hu N, Wang T Comput Math Methods Med. 2022; 2021:9436582.
PMID: 34976114 PMC: 8716222. DOI: 10.1155/2021/9436582.
Sitlani C, Lumley T, McKnight B, Rice K, Olson N, Doyle M BMC Med Res Methodol. 2020; 20(1):62.
PMID: 32169052 PMC: 7071747. DOI: 10.1186/s12874-020-00945-9.
Robust estimation in accelerated failure time models.
Sinha S Lifetime Data Anal. 2018; 25(1):52-78.
PMID: 29442279 DOI: 10.1007/s10985-018-9421-z.