» Articles » PMID: 22064852

EQuilibrator--the Biochemical Thermodynamics Calculator

Overview
Specialty Biochemistry
Date 2011 Nov 9
PMID 22064852
Citations 231
Authors
Affiliations
Soon will be listed here.
Abstract

The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

Citing Articles

Enzyme cascades for nucleotide sugar regeneration in glycoconjugate synthesis.

Elling L Appl Microbiol Biotechnol. 2025; 109(1):51.

PMID: 40014108 PMC: 11868170. DOI: 10.1007/s00253-025-13432-2.


Human citrate synthase kinetic simulation to fit rapid, direct, and thiol probe coupled kinetic data.

Shackelford N, Zavodny Z, Schindler S, Fancher N, Thomas A, Moxley M Biochem Biophys Rep. 2025; 41:101914.

PMID: 39886071 PMC: 11780148. DOI: 10.1016/j.bbrep.2025.101914.


PredCMB: predicting changes in microbial metabolites based on the gene-metabolite network analysis of shotgun metagenome data.

Ji J, Jung S Bioinformatics. 2025; 41(1).

PMID: 39814067 PMC: 11771765. DOI: 10.1093/bioinformatics/btaf020.


A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid.

Dietz K, Sagstetter C, Speck M, Roth A, Klamt S, Fabarius J Microb Cell Fact. 2024; 23(1):344.

PMID: 39716233 PMC: 11665112. DOI: 10.1186/s12934-024-02583-y.


Pyrophosphate-free glycolysis in Clostridium thermocellum increases both thermodynamic driving force and ethanol titers.

Sharma B, Hon S, Thusoo E, Stevenson D, Amador-Noguez D, Guss A Biotechnol Biofuels Bioprod. 2024; 17(1):146.

PMID: 39696391 PMC: 11658141. DOI: 10.1186/s13068-024-02591-5.


References
1.
Liebermeister W, Klipp E . Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Theor Biol Med Model. 2006; 3:42. PMC: 1781439. DOI: 10.1186/1742-4682-3-42. View

2.
Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D . BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci. 2002; 27(1):54-6. DOI: 10.1016/s0968-0004(01)02027-8. View

3.
Bennett B, Kimball E, Gao M, Osterhout R, Van Dien S, Rabinowitz J . Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009; 5(8):593-9. PMC: 2754216. DOI: 10.1038/nchembio.186. View

4.
Feist A, Henry C, Reed J, Krummenacker M, Joyce A, Karp P . A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007; 3:121. PMC: 1911197. DOI: 10.1038/msb4100155. View

5.
Mertens E . ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitol Today. 1993; 9(4):122-6. DOI: 10.1016/0169-4758(93)90169-g. View