» Articles » PMID: 22020637

Purification, Characterization, and Expression of Multiple Glutamine Synthetases from Prevotella Ruminicola 23

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2011 Oct 25
PMID 22020637
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The Prevotella ruminicola 23 genome encodes three different glutamine synthetase (GS) enzymes: glutamine synthetase I (GSI) (ORF02151), GSIII-1 (ORF01459), and GSIII-2 (ORF02034). GSI, GSIII-1, and GSIII-2 have each been heterologously expressed in and purified from Escherichia coli. The subunit molecular mass of GSI was 56 kDa, while GSIII-1 and GSIII-2 were both 83 kDa. Optimal conditions for γ-glutamyl transferase activity were found to be 35°C at pH 5.6 with 0.25 mM Mn(2+) ions (GSI) or 37°C at pH 6.0 (GSIII-1 and GSIII-2) with 0.50 to 1.00 mM Mn(2+) ions. GSIII biosynthetic activity was found to be optimal at 50 to 60°C and pH 6.8 to 7.0 with 10 mM Mn(2+) ions, while GSI displayed no GS biosynthetic activity. Kinetic analysis revealed K(m) values for glutamate and ammonium as well as for hydrolysis of ATP to be 8.58, 0.48, and 1.91 mM, respectively, for GSIII-1 and 1.72, 0.43, and 2.65 mM, respectively, for GSIII-2. A quantitative reverse transcriptase PCR assay (qRT-PCR) revealed GSIII-2 to be significantly induced by high concentrations of ammonia, and this corresponded with increases in measured GS activity. Collectively, these results show that both GSIII enzymes in P. ruminicola 23 are functional and indicate that GSIII-2, flanked by GOGAT (gltB and gltD genes), plays an important role in the acquisition and metabolism of ammonia, particularly under nonlimiting ammonia growth conditions.

Citing Articles

Nitrogen metabolism of the highly ureolytic bacterium Proteus penneri S99 isolated from the rumen.

Liu S, Zheng N, Wang J, Zhao S BMC Microbiol. 2025; 25(1):104.

PMID: 40021987 PMC: 11869435. DOI: 10.1186/s12866-025-03808-9.


NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota.

Lu X, Yang R, Chen Y, Chen D iScience. 2024; 27(3):109174.

PMID: 38405608 PMC: 10884928. DOI: 10.1016/j.isci.2024.109174.


Complete Genome Sequencing and Transcriptome Analysis of Nitrogen Metabolism of Strain Z6 Isolated From Dairy Cow Rumen.

Hailemariam S, Zhao S, Wang J Front Microbiol. 2020; 11:1826.

PMID: 33013723 PMC: 7507024. DOI: 10.3389/fmicb.2020.01826.


Functional Analysis of a Glutamine Biosynthesis Protein from a Psychrotrophic Bacterium, GCJ02.

Gong C, You X, Zhang S, Xue D Indian J Microbiol. 2020; 60(2):153-159.

PMID: 32255847 PMC: 7105534. DOI: 10.1007/s12088-020-00858-7.


Metabolic networks for nitrogen utilization in Prevotella ruminicola 23.

Kim J, Mendez-Garcia C, Geier R, Iakiviak M, Chang J, Cann I Sci Rep. 2017; 7(1):7851.

PMID: 28798330 PMC: 5552732. DOI: 10.1038/s41598-017-08463-3.


References
1.
Merrick M, Edwards R . Nitrogen control in bacteria. Microbiol Rev. 1995; 59(4):604-22. PMC: 239390. DOI: 10.1128/mr.59.4.604-622.1995. View

2.
Dehority B . Characterization of several bovine rumen bacteria isolated with a xylan medium. J Bacteriol. 1966; 91(5):1724-9. PMC: 316113. DOI: 10.1128/jb.91.5.1724-1729.1966. View

3.
Rochefort D, Benson D . Molecular cloning, sequencing, and expression of the glutamine synthetase II (glnII) gene from the actinomycete root nodule symbiont Frankia sp. strain CpI1. J Bacteriol. 1990; 172(9):5335-42. PMC: 213197. DOI: 10.1128/jb.172.9.5335-5342.1990. View

4.
Chifflet S, Torriglia A, Chiesa R, Tolosa S . A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal Biochem. 1988; 168(1):1-4. DOI: 10.1016/0003-2697(88)90002-4. View

5.
Brown J, Masuchi Y, Robb F, Doolittle W . Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol. 1994; 38(6):566-76. DOI: 10.1007/BF00175876. View