Song L, Jiang W, Lin H, Yu J, Liu K, Zheng R
Front Immunol. 2024; 15:1461051.
PMID: 39234245
PMC: 11371574.
DOI: 10.3389/fimmu.2024.1461051.
Kaneoka H, Arakawa K, Masuda Y, Ogawa D, Sugimoto K, Fukata R
J Biochem. 2024; 176(4):325-338.
PMID: 39077792
PMC: 11444932.
DOI: 10.1093/jb/mvae056.
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X
Front Immunol. 2024; 15:1365521.
PMID: 38629064
PMC: 11018997.
DOI: 10.3389/fimmu.2024.1365521.
Zhang T, Su F, Wang B, Liu L, Lu Y, Su H
Oncogene. 2024; 43(16):1190-1202.
PMID: 38409551
DOI: 10.1038/s41388-024-02985-7.
Shehzada S, Noto T, Saksouk J, Mochizuki K
Elife. 2024; 13.
PMID: 38197489
PMC: 10830130.
DOI: 10.7554/eLife.95337.
A CK2 and SUMO-dependent, PML NB-involved regulatory mechanism controlling BLM ubiquitination and G-quadruplex resolution.
Liu S, Atkinson E, Paulucci-Holthauzen A, Wang B
Nat Commun. 2023; 14(1):6111.
PMID: 37777511
PMC: 10542384.
DOI: 10.1038/s41467-023-41705-9.
A context-dependent and disordered ubiquitin-binding motif.
Dreier J, Prestel A, Martins J, Brondum S, Nielsen O, Garbers A
Cell Mol Life Sci. 2022; 79(9):484.
PMID: 35974206
PMC: 9381478.
DOI: 10.1007/s00018-022-04486-w.
A Photo-Crosslinking Approach to Identify Class II SUMO-1 Binders.
Bruninghoff K, Wulff S, Dorner W, Geiss-Friedlander R, Mootz H
Front Chem. 2022; 10:900989.
PMID: 35707458
PMC: 9191277.
DOI: 10.3389/fchem.2022.900989.
Sumoylation in Physiology, Pathology and Therapy.
Sahin U, de The H, Lallemand-Breitenbach V
Cells. 2022; 11(5).
PMID: 35269436
PMC: 8909597.
DOI: 10.3390/cells11050814.
Human immunodeficiency virus type 1 impairs sumoylation.
Mete B, Pekbilir E, Bilge B, Georgiadou P, Celik E, Sutlu T
Life Sci Alliance. 2022; 5(6).
PMID: 35181598
PMC: 8860096.
DOI: 10.26508/lsa.202101103.
Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs.
Varejao N, Lascorz J, Codina-Fabra J, Belli G, Borras-Gas H, Torres-Rosell J
Nat Commun. 2021; 12(1):7013.
PMID: 34853311
PMC: 8636563.
DOI: 10.1038/s41467-021-27301-9.
SUMO orchestrates multiple alternative DNA-protein crosslink repair pathways.
Serbyn N, Bagdiul I, Noireterre A, Michel A, Suhandynata R, Zhou H
Cell Rep. 2021; 37(8):110034.
PMID: 34818558
PMC: 10042627.
DOI: 10.1016/j.celrep.2021.110034.
In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae.
Jayakody L, Jin Y
Appl Microbiol Biotechnol. 2021; 105(7):2675-2692.
PMID: 33743026
DOI: 10.1007/s00253-021-11213-1.
The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response.
Gu Z, Chen X, Yang W, Qi Y, Yu H, Wang X
Cell Mol Immunol. 2020; 18(8):1981-1994.
PMID: 33184450
PMC: 8322076.
DOI: 10.1038/s41423-020-00564-w.
Plant PHR Transcription Factors: Put on A Map.
Sega P, Pacak A
Genes (Basel). 2019; 10(12).
PMID: 31817743
PMC: 6947268.
DOI: 10.3390/genes10121018.
SUMO3 modification by PIAS1 modulates androgen receptor cellular distribution and stability.
Yang N, Liu S, Qin T, Liu X, Watanabe N, Mayo K
Cell Commun Signal. 2019; 17(1):153.
PMID: 31752909
PMC: 6868827.
DOI: 10.1186/s12964-019-0457-9.
Regulation of the Ebola Virus VP24 Protein by SUMO.
Vidal S, El Motiam A, Seoane R, Preitakaite V, Bouzaher Y, Gomez-Medina S
J Virol. 2019; 94(1).
PMID: 31597768
PMC: 6912094.
DOI: 10.1128/JVI.01687-19.
Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain.
Sriramachandran A, Meyer-Teschendorf K, Pabst S, Ulrich H, Gehring N, Hofmann K
Nat Commun. 2019; 10(1):3678.
PMID: 31417085
PMC: 6695498.
DOI: 10.1038/s41467-019-11549-3.
How Does SUMO Participate in Spindle Organization?.
Abrieu A, Liakopoulos D
Cells. 2019; 8(8).
PMID: 31370271
PMC: 6721559.
DOI: 10.3390/cells8080801.
Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum.
Josa-Prado F, Luo J, Rubin P, Henley J, Wilkinson K
PLoS One. 2019; 14(2):e0212857.
PMID: 30794696
PMC: 6386258.
DOI: 10.1371/journal.pone.0212857.