» Articles » PMID: 22013535

Glucan Particles for Macrophage Targeted Delivery of Nanoparticles

Overview
Journal J Drug Deliv
Date 2011 Oct 21
PMID 22013535
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Glucan particles (GPs) are hollow, porous 2-4 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of soluble payloads (DNA, siRNA, protein, and small molecules) encapsulated inside the hollow GPs via core polyplex and layer-by-layer (LbL) synthetic strategies. In this communication, we report the incorporation of nanoparticles as cores inside GPs (GP-NP) or electrostatically bound to the surface of chemically derivatized GPs (NP-GP). GP nanoparticle formulations benefit from the drug encapsulation properties of NPs and the macrophage-targeting properties of GPs. GP nanoparticle formulations were synthesized using fluorescent anionic polystyrene nanoparticles allowing visualization and quantitation of NP binding and encapsulation. Mesoporous silica nanoparticles (MSNs) containing the chemotherapeutic doxorubicin (Dox) were bound to cationic GPs. Dox-MSN-GPs efficiently delivered Dox into GP phagocytic cells resulting in enhanced Dox-mediated growth arrest.

Citing Articles

Targeted delivery of antitubercular drugs using glucan lipid particles.

Jaecklein E, Papavinasasundaram K, Ostroff G, Sassetti C, Soto E Microbiol Spectr. 2025; 13(3):e0274424.

PMID: 39912634 PMC: 11878006. DOI: 10.1128/spectrum.02744-24.


Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges.

Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y J Nanobiotechnology. 2024; 22(1):431.

PMID: 39034407 PMC: 11265020. DOI: 10.1186/s12951-024-02670-7.


Rifabutin loaded inhalable β-glucan microparticle based drug delivery system for pulmonary TB.

Ahmad F, Ahmad S, Upadhyay T, Singh S, Khubaib M, Singh J Sci Rep. 2024; 14(1):16437.

PMID: 39013991 PMC: 11253001. DOI: 10.1038/s41598-024-66634-5.


Oral bioavailability of a noncoding RNA drug, TY1, that acts on macrophages.

Yamaguchi S, Miyamoto K, Jones X, Ciullo A, Morris A, Tsi K bioRxiv. 2024; .

PMID: 38746093 PMC: 11092517. DOI: 10.1101/2024.04.27.591474.


Understanding yeast shells: structure, properties and applications.

Macedo L, Pinho S, Silva A, Moura I, Espinoza B, Invencao M ADMET DMPK. 2024; 12(2):299-317.

PMID: 38720922 PMC: 11075163. DOI: 10.5599/admet.2118.


References
1.
Sun D . Nanotheranostics: integration of imaging and targeted drug delivery. Mol Pharm. 2010; 7(6):1879. DOI: 10.1021/mp1003652. View

2.
Choi C, Alabi C, Webster P, Davis M . Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010; 107(3):1235-40. PMC: 2824286. DOI: 10.1073/pnas.0914140107. View

3.
Thielbeer F, Donaldson K, Bradley M . Zeta potential mediated reaction monitoring on nano and microparticles. Bioconjug Chem. 2011; 22(2):144-50. DOI: 10.1021/bc1005015. View

4.
Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E . Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug Chem. 1992; 3(6):533-9. DOI: 10.1021/bc00018a012. View

5.
Aouadi M, Tesz G, Nicoloro S, Wang M, Chouinard M, Soto E . Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009; 458(7242):1180-4. PMC: 2879154. DOI: 10.1038/nature07774. View