» Articles » PMID: 22013386

The Evolution of the Mitochondria-to-calcium Release Units Relationship in Vertebrate Skeletal Muscles

Overview
Specialty Biology
Date 2011 Oct 21
PMID 22013386
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The spatial relationship between mitochondria and the membrane systems, more specifically the calcium release units (CRUs) of skeletal muscle, is of profound functional significance. CRUs are the sites at which Ca(2+) is released from the sarcoplasmic reticulum during muscle activation. Close mitochondrion-CRU proximity allows the organelles to take up Ca(2+) and thus stimulate aerobic metabolism. Skeletal muscles of most mammals display an extensive, developmentally regulated, close mitochondrion-CRU association, fostered by tethering links between the organelles. A comparative look at the vertebrate subphylum however shows that this specific association is only present in the higher vertebrates (mammals). Muscles in all other vertebrates, even if capable of fast activity, rely on a less precise and more limited mitochondrion-CRU proximity, despite some tethering connections. This is most evident in fish muscles. Clustering of free subsarcolemmal mitochondria in proximity of capillaries is also more frequently achieved in mammalian than in other vertebrates.

Citing Articles

Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease.

Boardman N, Trani G, Scalabrin M, Romanello V, Wust R Endocr Rev. 2023; 44(4):668-692.

PMID: 36725366 PMC: 10335175. DOI: 10.1210/endrev/bnad004.


Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research.

Bolanos P, Calderon J Front Physiol. 2022; 13:989796.

PMID: 36117698 PMC: 9478590. DOI: 10.3389/fphys.2022.989796.


The location of InsP3 receptors in Purkinje cells of murine cerebellum does not supports a direct interaction in the transfer of calcium ions between ER and mitochondria.

Iyer R, Franzini-Armstrong C Eur J Transl Myol. 2021; 31(3).

PMID: 34498451 PMC: 8495361. DOI: 10.4081/ejtm.2021.9935.


Ageing Causes Ultrastructural Modification to Calcium Release Units and Mitochondria in Cardiomyocytes.

Di Fonso A, Pietrangelo L, DOnofrio L, Michelucci A, Boncompagni S, Protasi F Int J Mol Sci. 2021; 22(16).

PMID: 34445071 PMC: 8395047. DOI: 10.3390/ijms22168364.


Impact of Mitophagy and Mitochondrial Unfolded Protein Response as New Adaptive Mechanisms Underlying Old Pathologies: Sarcopenia and Non-Alcoholic Fatty Liver Disease.

Urbina-Varela R, Castillo N, Videla L, Del Campo A Int J Mol Sci. 2020; 21(20).

PMID: 33081022 PMC: 7589512. DOI: 10.3390/ijms21207704.


References
1.
Yi M, Weaver D, Hajnoczky G . Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol. 2004; 167(4):661-72. PMC: 2172592. DOI: 10.1083/jcb.200406038. View

2.
Isaeva E, Shirokova N . Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol. 2003; 547(Pt 2):453-62. PMC: 2342647. DOI: 10.1113/jphysiol.2002.036129. View

3.
Rizzuto R, Simpson A, Brini M, Pozzan T . Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992; 358(6384):325-7. DOI: 10.1038/358325a0. View

4.
Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider T . Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell. 2010; 39(1):121-32. PMC: 3178184. DOI: 10.1016/j.molcel.2010.06.029. View

5.
Boncompagni S, Rossi A, Micaroni M, Hamilton S, Dirksen R, Franzini-Armstrong C . Characterization and temporal development of cores in a mouse model of malignant hyperthermia. Proc Natl Acad Sci U S A. 2009; 106(51):21996-2001. PMC: 2799858. DOI: 10.1073/pnas.0911496106. View