» Articles » PMID: 22011653

Directed Differentiation of Functional Astroglial Subtypes from Human Pluripotent Stem Cells

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2011 Oct 21
PMID 22011653
Citations 148
Authors
Affiliations
Soon will be listed here.
Abstract

Regionally and functionally diverse types of astrocytes exist throughout the central nervous system and participate in nearly every aspect of normal and abnormal neural function. Therefore, human astrocyte subtypes are useful tools for understanding brain function, modulating disease processes and promoting neural regeneration. Here we describe a protocol for directed differentiation and maintenance of functional astroglia from human pluripotent stem cells in a chemically defined system. Human stem cells are first differentiated into neuroepithelial cells with or without exogenous patterning molecules (days 0-21). Regular dissociation of the neuroepithelial clusters in suspension, and in the presence of mitogens, permits generation of astroglial subtypes over a long-term expansion (days 21-90). Finally, the astroglial progenitors are either amplified for an extended time or differentiated into functional astrocytes on removal of mitogens and the addition of ciliary neurotrophic factor (days >90). This method generates robust populations of functionally diversified astrocytes with high efficiency.

Citing Articles

Assessing models for microglial development and fetal programming: a critical review.

Schepanski S, Ngoumou G, Buss C, Seifert G Front Immunol. 2025; 16:1538920.

PMID: 39944696 PMC: 11814449. DOI: 10.3389/fimmu.2025.1538920.


CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.

Li E, Benitez C, Boggess S, Koontz M, Rose I, Martinez D Neuron. 2025; 113(5):701-718.e8.

PMID: 39814010 PMC: 11886924. DOI: 10.1016/j.neuron.2024.12.016.


Exploring dysfunctional barrier phenotypes associated with glaucoma using a human pluripotent stem cell-based model of the neurovascular unit.

Lavekar S, Hughes J, Gomes C, Huang K, Harkin J, Canfield S Fluids Barriers CNS. 2024; 21(1):90.

PMID: 39543684 PMC: 11566410. DOI: 10.1186/s12987-024-00593-x.


Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease.

Jurakova V, Szeky B, Zapletalova M, Feher A, Zana M, Pandey S Biol Proced Online. 2024; 26(1):30.

PMID: 39342077 PMC: 11437813. DOI: 10.1186/s12575-024-00257-y.


A single-cell transcriptomic dataset of pluripotent stem cell-derived astrocytes via NFIB/SOX9 overexpression.

Yi R, Chen S, Guan M, Liao C, Zhu Y, Ip J Sci Data. 2024; 11(1):987.

PMID: 39256463 PMC: 11387634. DOI: 10.1038/s41597-024-03823-x.


References
1.
Tabar V, Panagiotakos G, Greenberg E, Chan B, Sadelain M, Gutin P . Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol. 2005; 23(5):601-6. DOI: 10.1038/nbt1088. View

2.
Chojnacki A, Weiss S . Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc. 2008; 3(6):935-40. DOI: 10.1038/nprot.2008.55. View

3.
Zhang S . Defining glial cells during CNS development. Nat Rev Neurosci. 2001; 2(11):840-3. DOI: 10.1038/35097593. View

4.
Li X, Zhang X, Johnson M, Wang Z, LaVaute T, Zhang S . Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009; 136(23):4055-63. PMC: 2778748. DOI: 10.1242/dev.036624. View

5.
Liu Y, Han S, Wu Y, Tuohy T, Xue H, Cai J . CD44 expression identifies astrocyte-restricted precursor cells. Dev Biol. 2004; 276(1):31-46. DOI: 10.1016/j.ydbio.2004.08.018. View