» Articles » PMID: 22007694

Hydrogen Bonding of Tryptophan Radicals Revealed by EPR at 700 GHz

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2011 Oct 20
PMID 22007694
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Redox-active tryptophans are important in biological electron transfer and redox biochemistry. Proteins can tune the electron transfer kinetics and redox potentials of tryptophan via control of the protonation state and the hydrogen-bond strength. We examine the local environment of two neutral tryptophan radicals (Trp108 on the solvent-exposed surface and Trp48 buried in the hydrophobic core) in two azurin variants. Ultrahigh-field EPR spectroscopy at 700 GHz and 25 T allowed complete resolution of all of the principal components of the g tensors of the two radicals and revealed significant differences in the g tensor anisotropies. The spectra together with (2)H ENDOR spectra and supporting DFT calculations show that the g tensor anisotropy is directly diagnostic of the presence or absence as well as the strength of a hydrogen bond to the indole nitrogen. The approach is a powerful one for identifying and characterizing hydrogen bonds that are critical in the regulation of tryptophan-assisted electron transfer and tryptophan-mediated redox chemistry in proteins.

Citing Articles

Machine Learning Isotropic Values of Radical Polymers.

Daniel D, Mitra S, Eichel R, Diddens D, Granwehr J J Chem Theory Comput. 2024; 20(6):2592-2604.

PMID: 38456629 PMC: 10976631. DOI: 10.1021/acs.jctc.3c01252.


Proximal Methionine Amino Acid Residue Affects the Properties of Redox-Active Tryptophan in an Artificial Model Protein.

Gibbs C, Fedoretz-Maxwell B, MacNeil G, Walsby C, Warren J ACS Omega. 2023; 8(22):19798-19806.

PMID: 37305310 PMC: 10249128. DOI: 10.1021/acsomega.3c01589.


Selective incorporation of 5-hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase.

Pastore A, Montoya A, Kamat M, Basso K, Italia J, Chatterjee A Protein Sci. 2022; 32(1):e4537.

PMID: 36482787 PMC: 9801070. DOI: 10.1002/pro.4537.


Tryptophan Can Promote Oxygen Reduction to Water in a Biosynthetic Model of Heme Copper Oxidases.

Ledray A, Dwaraknath S, Chakarawet K, Sponholtz M, Merchen C, Van Stappen C Biochemistry. 2022; 62(2):388-395.

PMID: 36215733 PMC: 10199329. DOI: 10.1021/acs.biochem.2c00300.


Pulsed Multifrequency Electron Paramagnetic Resonance Spectroscopy Reveals Key Branch Points for One- vs Two-Electron Reactivity in Mn/Fe Proteins.

Kisgeropoulos E, Gan Y, Greer S, Hazel J, Shafaat H J Am Chem Soc. 2022; 144(27):11991-12006.

PMID: 35786920 PMC: 9433311. DOI: 10.1021/jacs.1c13738.


References
1.
Pogni R, Baratto M, Giansanti S, Teutloff C, Verdin J, Valderrama B . Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry. 2005; 44(11):4267-74. DOI: 10.1021/bi047474l. View

2.
Hammel K, Cullen D . Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol. 2008; 11(3):349-55. DOI: 10.1016/j.pbi.2008.02.003. View

3.
Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G . Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone formula by 1H and 2H ENDOR spectroscopy. Biophys J. 2006; 92(2):671-82. PMC: 1751397. DOI: 10.1529/biophysj.106.092460. View

4.
Shih C, Museth A, Abrahamsson M, Blanco-Rodriguez A, Di Bilio A, Sudhamsu J . Tryptophan-accelerated electron flow through proteins. Science. 2008; 320(5884):1760-2. DOI: 10.1126/science.1158241. View

5.
Pogni R, Baratto M, Teutloff C, Giansanti S, Ruiz-Duenas F, Choinowski T . A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem. 2006; 281(14):9517-26. DOI: 10.1074/jbc.M510424200. View