» Articles » PMID: 22005835

Targeting the Interplay Between Myeloma Cells and the Bone Marrow Microenvironment in Myeloma

Overview
Journal Int J Hematol
Specialty Hematology
Date 2011 Oct 19
PMID 22005835
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Cellular interplay in the bone marrow (BM) microenvironment in multiple myeloma (MM) mediates MM growth and the formation of bone-destructive lesions. MM cells show enhanced osteoclastogenesis, and stimulate angiogenesis in concert with BM stromal cells and osteoclasts, whereas they suppress osteoblastic differentiation, leading to devastating bone destruction and the rapid loss of bone. Importantly, osteoclasts, vascular endothelial cells, and BM stromal cells with defective osteoblastic differentiation create a cellular microenvironment suitable for MM growth and survival and confer a drug resistance to MM cells, which can be construed as the "MM niche". Therefore, the MM niche must be targeted and disrupted to improve the efficacy of anti-tumor treatment and prevent the progression of bone disease in MM. Clarifying molecular mechanisms leading to the formation of the MM niche along with bone disease will help in the development of novel approaches targeting the interplay between MM cells and the BM microenvironment.

Citing Articles

Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review.

Schutt J, Brinkert K, Plis A, Schenk T, Brioli A Cancer Drug Resist. 2024; 7:26.

PMID: 39050883 PMC: 11267153. DOI: 10.20517/cdr.2024.39.


Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche.

Solimando A, Malerba E, Leone P, Prete M, Terragna C, Cavo M Front Oncol. 2022; 12:973836.

PMID: 36212502 PMC: 9533079. DOI: 10.3389/fonc.2022.973836.


The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression.

Smesny Trtkova K, Luzna P, Drozdkova D, Cizkova K, Janovska L, Gursky J Mol Med Rep. 2022; 26(4).

PMID: 36043519 PMC: 9471560. DOI: 10.3892/mmr.2022.12837.


Preclinical validation and phase I trial of 4-hydroxysalicylanilide, targeting ribonucleotide reductase mediated dNTP synthesis in multiple myeloma.

Xie Y, Wang Y, Xu Z, Lu Y, Song D, Gao L J Biomed Sci. 2022; 29(1):32.

PMID: 35546402 PMC: 9097096. DOI: 10.1186/s12929-022-00813-2.


Myeloma-Bone Interaction: A Vicious Cycle via TAK1-PIM2 Signaling.

Harada T, Hiasa M, Teramachi J, Abe M Cancers (Basel). 2021; 13(17).

PMID: 34503251 PMC: 8431187. DOI: 10.3390/cancers13174441.


References
1.
Edwards C, Edwards J, Lwin S, Esparza J, Oyajobi B, McCluskey B . Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood. 2007; 111(5):2833-42. PMC: 2254537. DOI: 10.1182/blood-2007-03-077685. View

2.
Lee J, Chung H, Ehrlich L, Jelinek D, Callander N, Roodman G . IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 2003; 103(6):2308-15. DOI: 10.1182/blood-2003-06-1992. View

3.
Delforge M, Terpos E, Richardson P, Shpilberg O, Khuageva N, Schlag R . Fewer bone disease events, improvement in bone remodeling, and evidence of bone healing with bortezomib plus melphalan-prednisone vs. melphalan-prednisone in the phase III VISTA trial in multiple myeloma. Eur J Haematol. 2011; 86(5):372-84. DOI: 10.1111/j.1600-0609.2011.01599.x. View

4.
Fonseca R, Trendle M, Leong T, Kyle R, Oken M, Kay N . Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br J Haematol. 2000; 109(1):24-9. DOI: 10.1046/j.1365-2141.2000.01960.x. View

5.
Hashimoto T, Abe M, Oshima T, Shibata H, Ozaki S, Inoue D . Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol. 2004; 125(1):38-41. DOI: 10.1111/j.1365-2141.2004.04864.x. View