» Articles » PMID: 22003689

The Relevance Voxel Machine (RVoxM): a Bayesian Method for Image-based Prediction

Overview
Publisher Springer
Date 2011 Oct 19
PMID 22003689
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

This paper presents the Relevance Voxel Machine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to utilize a small number of spatially clustered sets of voxels that are particularly suited for clinical interpretation. RVoxM automatically tunes all its free parameters during the training phase, and offers the additional advantage of producing probabilistic prediction outcomes. Experiments on age prediction from structural brain MRI indicate that RVoxM yields biologically meaningful models that provide excellent predictive accuracy.

Citing Articles

An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model.

Kaiser E, Poythress J, Scheulin K, Jurgielewicz B, Lazar N, Park C Neural Regen Res. 2020; 16(5):842-850.

PMID: 33229718 PMC: 8178783. DOI: 10.4103/1673-5374.297079.


Ten Years of as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained?.

Franke K, Gaser C Front Neurol. 2019; 10:789.

PMID: 31474922 PMC: 6702897. DOI: 10.3389/fneur.2019.00789.


Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

Linn K, Gaonkar B, Satterthwaite T, Doshi J, Davatzikos C, Shinohara R Neuroimage. 2016; 132:157-166.

PMID: 26915498 PMC: 4851898. DOI: 10.1016/j.neuroimage.2016.02.044.


Probabilistic Modeling of Imaging, Genetics and Diagnosis.

Batmanghelich N, Dalca A, Quon G, Sabuncu M, Golland P IEEE Trans Med Imaging. 2016; 35(7):1765-79.

PMID: 26886973 PMC: 5364030. DOI: 10.1109/TMI.2016.2527784.


Addressing Confounding in Predictive Models with an Application to Neuroimaging.

Linn K, Gaonkar B, Doshi J, Davatzikos C, Shinohara R Int J Biostat. 2015; 12(1):31-44.

PMID: 26641972 PMC: 5154735. DOI: 10.1515/ijb-2015-0030.


References
1.
Pereira F, Mitchell T, Botvinick M . Machine learning classifiers and fMRI: a tutorial overview. Neuroimage. 2008; 45(1 Suppl):S199-209. PMC: 2892746. DOI: 10.1016/j.neuroimage.2008.11.007. View

2.
Davatzikos C, Fan Y, Wu X, Shen D, Resnick S . Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiol Aging. 2006; 29(4):514-23. PMC: 2323584. DOI: 10.1016/j.neurobiolaging.2006.11.010. View

3.
Ashburner J, Friston K . Voxel-based morphometry--the methods. Neuroimage. 2000; 11(6 Pt 1):805-21. DOI: 10.1006/nimg.2000.0582. View

4.
Pohl K, Sabuncu M . A unified framework for MR based disease classification. Inf Process Med Imaging. 2009; 21:300-13. PMC: 2854674. DOI: 10.1007/978-3-642-02498-6_25. View

5.
Fischl B, Dale A . Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000; 97(20):11050-5. PMC: 27146. DOI: 10.1073/pnas.200033797. View