» Articles » PMID: 21994628

Molecular Basis for Drug Resistance in HIV-1 Protease

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2011 Oct 14
PMID 21994628
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease's function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

Citing Articles

Crystallographic fragment screening and deep mutational scanning of Zika virus NS2B-NS3 protease enable development of resistance-resilient inhibitors.

von Delft F, Ni X, Richardson R, Godoy A, Ferla M, Kikawa C Res Sq. 2025; .

PMID: 39989958 PMC: 11844641. DOI: 10.21203/rs.3.rs-5876218/v1.


Structural Analysis of Inhibitor Binding to Enterovirus-D68 3C Protease.

Azzolino V, Shaqra A, Ali A, Yilmaz N, Schiffer C Viruses. 2025; 17(1).

PMID: 39861864 PMC: 11768739. DOI: 10.3390/v17010075.


Design, Synthesis, and Biological Evaluation of Darunavir Analogs as HIV-1 Protease Inhibitors.

Ur Rehman M, Chuntakaruk H, Amphan S, Suroengrit A, Hengphasatporn K, Shigeta Y ACS Bio Med Chem Au. 2024; 4(5):242-256.

PMID: 39431267 PMC: 11487539. DOI: 10.1021/acsbiomedchemau.4c00040.


Elucidating the Substrate Envelope of Enterovirus 68-3C Protease: Structural Basis of Specificity and Potential Resistance.

Azzolino V, Shaqra A, Ali A, Yilmaz N, Schiffer C Viruses. 2024; 16(9).

PMID: 39339895 PMC: 11437433. DOI: 10.3390/v16091419.


SARS-CoV-2 M inhibitor identification using a cellular gain-of-signal assay for high-throughput screening.

Delgado R, Vishwakarma J, Moghadasi S, Otsuka Y, Shumate J, Cuell A SLAS Discov. 2024; 29(6):100181.

PMID: 39173830 PMC: 11550483. DOI: 10.1016/j.slasd.2024.100181.


References
1.
Holguin A, Sune C, Hamy F, Soriano V, Klimkait T . Natural polymorphisms in the protease gene modulate the replicative capacity of non-B HIV-1 variants in the absence of drug pressure. J Clin Virol. 2006; 36(4):264-71. DOI: 10.1016/j.jcv.2006.05.001. View

2.
Prabu-Jeyabalan M, Nalivaika E, King N, Schiffer C . Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy. J Virol. 2002; 77(2):1306-15. PMC: 140781. DOI: 10.1128/jvi.77.2.1306-1315.2003. View

3.
Rhee S, Taylor J, Fessel W, Kaufman D, Towner W, Troia P . HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrob Agents Chemother. 2010; 54(10):4253-61. PMC: 2944562. DOI: 10.1128/AAC.00574-10. View

4.
Stoica I, Sadiq S, Coveney P . Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. J Am Chem Soc. 2008; 130(8):2639-48. DOI: 10.1021/ja0779250. View

5.
Navia M, Fitzgerald P, McKeever B, Leu C, Heimbach J, Herber W . Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature. 1989; 337(6208):615-20. DOI: 10.1038/337615a0. View