» Articles » PMID: 21960942

Critical Property in Relaxor-PbTiO(3) Single Crystals --- Shear Piezoelectric Response

Overview
Journal Adv Funct Mater
Date 2011 Oct 1
PMID 21960942
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The shear piezoelectric behavior in relaxor-PbTiO(3) (PT) single crystals is investigated in regard to crystal phase. High levels of shear piezoelectric activity, d(15) or d(24) >2000 pC N(-1), has been observed for single domain rhombohedral (R), orthorhombic (O) and tetragonal (T) relaxor-PT crystals. The high piezoelectric response is attributed to a flattening of the Gibbs free energy at compositions proximate to the morphotropic phase boundaries, where the polarization rotation is easy with applying perpendicular electric field. The shear piezoelectric behavior of pervoskite ferroelectric crystals was discussed with respect to ferroelectric-ferroelectric phase transitions and dc bias field using phenomenological approach. The relationship between single domain shear piezoelectric response and piezoelectric activities in domain engineered configurations were given in this paper. From an application viewpoint, the temperature and ac field drive stability for shear piezoelectric responses are investigated. A temperature independent shear piezoelectric response (d(24), in the range of -50°C to O-T phase transition temperature) is thermodynamically expected and experimentally confirmed in orthorhombic relaxor-PT crystals; relatively high ac field drive stability (5 kV cm(-1)) is obtained in manganese modified relaxor-PT crystals. For all thickness shear vibration modes, the mechanical quality factor Qs are less than 50, corresponding to the facilitated polarization rotation.

Citing Articles

Near-ideal electromechanical coupling in textured piezoelectric ceramics.

Yan Y, Geng L, Liu H, Leng H, Li X, Wang Y Nat Commun. 2022; 13(1):3565.

PMID: 35732653 PMC: 9217974. DOI: 10.1038/s41467-022-31165-y.


Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals.

Yang L, Huang H, Xi Z, Zheng L, Xu S, Tian G Nat Commun. 2022; 13(1):2444.

PMID: 35508534 PMC: 9068613. DOI: 10.1038/s41467-022-29962-6.


Effects of alternating current poling on the dielectric and piezoelectric properties of Pb(InNb)O-PbTiO crystals with a high Curie temperature.

Xiong J, Wang Z, Yang X, Su R, Long X, He C RSC Adv. 2022; 11(21):12826-12832.

PMID: 35423794 PMC: 8697361. DOI: 10.1039/d0ra10234b.


Tailoring Artificial Mode to Enable Cofired Integration of Shear-type Piezoelectric Devices.

Yang J, Huan Q, Yu Y, Wu J, Chu Z, PourhosseiniAsl M Adv Sci (Weinh). 2020; 7(17):2001368.

PMID: 32999819 PMC: 7507555. DOI: 10.1002/advs.202001368.


The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G Nat Commun. 2016; 7:13807.

PMID: 27991504 PMC: 5187463. DOI: 10.1038/ncomms13807.


References
1.
Noheda B, Cox D, Shirane G, Park S, Cross L, Zhong Z . Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn(1/3)Nb(2/3)O3-8% PbTiO3. Phys Rev Lett. 2001; 86(17):3891-4. DOI: 10.1103/PhysRevLett.86.3891. View

2.
Zhang S, Luo J, Hackenberger W, Shrout T . Characterization of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) ferroelectric crystal with enhanced phase transition temperatures. J Appl Phys. 2009; 104(6):64106. PMC: 2685212. DOI: 10.1063/1.2978333. View

3.
Li F, Zhang S, Lin D, Luo J, Xu Z, Wei X . Electromechanical properties of Pb(In(1∕2)Nb(1∕2))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) single crystals. J Appl Phys. 2011; 109(1):14108. PMC: 3030615. DOI: 10.1063/1.3530617. View

4.
Li F, Zhang S, Xu Z, Wei X, Luo J, Shrout T . Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) crystals. J Appl Phys. 2010; 108(3). PMC: 2929257. DOI: 10.1063/1.3466978. View

5.
Zhang S, Shrout T . Relaxor-PT single crystals: observations and developments. IEEE Trans Ultrason Ferroelectr Freq Control. 2010; 57(10):2138-46. PMC: 3180875. DOI: 10.1109/TUFFC.2010.1670. View