» Articles » PMID: 21949363

Ultrasensitive Detection of Protein Translocated Through Toxin Pores in Droplet-interface Bilayers

Overview
Specialty Science
Date 2011 Sep 28
PMID 21949363
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Many bacterial toxins form proteinaceous pores that facilitate the translocation of soluble effector proteins across cellular membranes. With anthrax toxin this process may be monitored in real time by electrophysiology, where fluctuations in ionic current through these pores inserted in model membranes are used to infer the translocation of individual protein molecules. However, detecting the minute quantities of translocated proteins has been a challenge. Here, we describe use of the droplet-interface bilayer system to follow the movement of proteins across a model membrane separating two submicroliter aqueous droplets. We report the capture and subsequent direct detection of as few as 100 protein molecules that have translocated through anthrax toxin pores. The droplet-interface bilayer system offers new avenues of approach to the study of protein translocation.

Citing Articles

Nanopore-based detection of periodontitis biomarker miR31 in saliva samples.

Arora P, Zheng H, Munusamy S, Jahani R, Guan X Electrophoresis. 2024; 45(21-22):2034-2044.

PMID: 39165194 PMC: 11663126. DOI: 10.1002/elps.202400134.


Encapsulated droplet interface bilayers as a platform for high-throughput membrane studies.

Baxani D, Jamieson W, Barrow D, Castell O Soft Matter. 2022; 18(27):5089-5096.

PMID: 35766018 PMC: 9277618. DOI: 10.1039/d1sm01111a.


Solution Structures of Protective Antigen Proteins Using Small Angle Neutron Scattering and Protective Antigen 63 Ion Channel Formation Kinetics.

Michelman-Ribeiro A, Rubinson K, Silin V, Kasianowicz J Toxins (Basel). 2021; 13(12).

PMID: 34941724 PMC: 8708185. DOI: 10.3390/toxins13120888.


Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks.

Bachler S, Haidas D, Ort M, Duncombe T, Dittrich P Commun Biol. 2020; 3(1):769.

PMID: 33318607 PMC: 7736871. DOI: 10.1038/s42003-020-01489-w.


Probing membrane protein properties using droplet interface bilayers.

Allen-Benton M, Findlay H, Booth P Exp Biol Med (Maywood). 2019; 244(8):709-720.

PMID: 31053046 PMC: 6552395. DOI: 10.1177/1535370219847939.


References
1.
Hwang W, Holden M, White S, Bayley H . Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. J Am Chem Soc. 2007; 129(38):11854-64. DOI: 10.1021/ja074071a. View

2.
Funakoshi K, Suzuki H, Takeuchi S . Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem. 2006; 78(24):8169-74. DOI: 10.1021/ac0613479. View

3.
Krantz B, Finkelstein A, Collier R . Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol. 2005; 355(5):968-79. DOI: 10.1016/j.jmb.2005.11.030. View

4.
Dmochewitz L, Lillich M, Kaiser E, Jennings L, Lang A, Buchner J . Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cell Microbiol. 2010; 13(3):359-73. PMC: 3031994. DOI: 10.1111/j.1462-5822.2010.01539.x. View

5.
Sun J, Vernier G, Wigelsworth D, Collier R . Insertion of anthrax protective antigen into liposomal membranes: effects of a receptor. J Biol Chem. 2006; 282(2):1059-65. DOI: 10.1074/jbc.M609869200. View