» Articles » PMID: 21946326

Neural Activity at the Human Olfactory Epithelium Reflects Olfactory Perception

Overview
Journal Nat Neurosci
Date 2011 Sep 28
PMID 21946326
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Organization of receptive surfaces reflects primary axes of perception. In vision, retinal coordinates reflect spatial coordinates. In audition, cochlear coordinates reflect tonal coordinates. However, the rules underlying the organization of the olfactory receptive surface are unknown. To test the hypothesis that organization of the olfactory epithelium reflects olfactory perception, we inserted an electrode into the human olfactory epithelium to directly measure odorant-induced evoked responses. We found that pairwise differences in odorant pleasantness predicted pairwise differences in response magnitude; that is, a location that responded maximally to a pleasant odorant was likely to respond strongly to other pleasant odorants, and a location that responded maximally to an unpleasant odorant was likely to respond strongly to other unpleasant odorants. Moreover, the extent of an individual's perceptual span predicted their span in evoked response. This suggests that, similarly to receptor surfaces for vision and audition, organization of the olfactory receptor surface reflects key axes of perception.

Citing Articles

Direct perception of affective valence from vision.

Sadeghi S, Gu Z, De Rosa E, Kuceyeski A, Anderson A Nat Commun. 2024; 15(1):10735.

PMID: 39737913 PMC: 11686310. DOI: 10.1038/s41467-024-53668-6.


A deep position-encoding model for predicting olfactory perception from molecular structures and electrostatics.

Zhang M, Hiki Y, Funahashi A, Kobayashi T NPJ Syst Biol Appl. 2024; 10(1):76.

PMID: 39019918 PMC: 11255234. DOI: 10.1038/s41540-024-00401-0.


High-precision mapping reveals the structure of odor coding in the human brain.

Sagar V, Shanahan L, Zelano C, Gottfried J, Kahnt T Nat Neurosci. 2023; 26(9):1595-1602.

PMID: 37620443 PMC: 10726579. DOI: 10.1038/s41593-023-01414-4.


Physicochemical features partially explain olfactory crossmodal correspondences.

Ward R, Wuerger S, Ashraf M, Marshall A Sci Rep. 2023; 13(1):10590.

PMID: 37391587 PMC: 10313698. DOI: 10.1038/s41598-023-37770-1.


Predicting the crossmodal correspondences of odors using an electronic nose.

Ward R, Rahman S, Wuerger S, Marshall A Heliyon. 2022; 8(4):e09284.

PMID: 35497032 PMC: 9043411. DOI: 10.1016/j.heliyon.2022.e09284.


References
1.
Kepecs A, Uchida N, Mainen Z . The sniff as a unit of olfactory processing. Chem Senses. 2005; 31(2):167-79. DOI: 10.1093/chemse/bjj016. View

2.
Edwards D, Mather R, Dodd G . Spatial variation in response to odorants on the rat olfactory epithelium. Experientia. 1988; 44(3):208-11. DOI: 10.1007/BF01941707. View

3.
Vater M, Kossl M . Comparative aspects of cochlear functional organization in mammals. Hear Res. 2010; 273(1-2):89-99. DOI: 10.1016/j.heares.2010.05.018. View

4.
Haddad R, Khan R, Takahashi Y, Mori K, Harel D, Sobel N . A metric for odorant comparison. Nat Methods. 2008; 5(5):425-9. DOI: 10.1038/nmeth.1197. View

5.
Saito H, Chi Q, Zhuang H, Matsunami H, Mainland J . Odor coding by a Mammalian receptor repertoire. Sci Signal. 2009; 2(60):ra9. PMC: 2774247. DOI: 10.1126/scisignal.2000016. View