» Articles » PMID: 21939237

Fast NMR Data Acquisition from Bicelles Containing a Membrane-associated Peptide at Natural-abundance

Overview
Journal J Phys Chem B
Specialty Chemistry
Date 2011 Sep 24
PMID 21939237
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

In spite of recent technological advances in NMR spectroscopy, its low sensitivity continues to be a major limitation particularly for the structural studies of membrane proteins. The need for a large quantity of a membrane protein and acquisition of NMR data for a long duration are not desirable. Therefore, there is considerable interest in the development of methods to speed up the NMR data acquisition from model membrane samples. In this study, we demonstrate the feasibility of acquiring two-dimensional spectra of an antimicrobial peptide (MSI-78; also known as pexiganan) embedded in isotropic bicelles using natural-abundance (15)N nuclei. A copper-chelated lipid embedded in bicelles is used to speed-up the spin-lattice relaxation of protons without affecting the spectral resolution and thus enabling fast data acquisition. Our results suggest that even a 2D SOFAST-HMQC spectrum can be obtained four times faster using a very small amount (∼3 mM) of a copper-chelated lipid. These results demonstrate that this approach will be useful in the structural studies of membrane-associated peptides and proteins without the need for isotopic enrichment for solution NMR studies.

Citing Articles

On-Site Measurement of Fat and Protein Contents in Milk Using Mobile NMR Technology.

Sorensen M, Balsgart N, Beyer M, Jensen O, Nielsen N Molecules. 2022; 27(3).

PMID: 35163848 PMC: 8839330. DOI: 10.3390/molecules27030583.


Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition.

Di Mauro G, Hardin N, Ramamoorthy A Biochim Biophys Acta Biomembr. 2020; 1862(9):183332.

PMID: 32360741 PMC: 7340147. DOI: 10.1016/j.bbamem.2020.183332.


Metal-Chelated Polymer Nanodiscs for NMR Studies.

Hardin N, Kocman V, Di Mauro G, Ravula T, Ramamoorthy A Angew Chem Int Ed Engl. 2019; 58(48):17246-17250.

PMID: 31529579 PMC: 6861636. DOI: 10.1002/anie.201910118.


Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies.

Kocman V, Di Mauro G, Veglia G, Ramamoorthy A Solid State Nucl Magn Reson. 2019; 102:36-46.

PMID: 31325686 PMC: 6698407. DOI: 10.1016/j.ssnmr.2019.07.002.


Paramagnetic relaxation enhancement for protein-observed F NMR as an enabling approach for efficient fragment screening.

Hawk L, Gee C, Urick A, Hu H, Pomerantz W RSC Adv. 2017; 6(98):95715-95721.

PMID: 28496971 PMC: 5421645. DOI: 10.1039/C6RA21226C.


References
1.
Thurber K, Yau W, Tycko R . Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source. J Magn Reson. 2010; 204(2):303-13. PMC: 2874615. DOI: 10.1016/j.jmr.2010.03.016. View

2.
Yamamoto K, Xu J, Kawulka K, Vederas J, Ramamoorthy A . Use of a copper-chelated lipid speeds up NMR measurements from membrane proteins. J Am Chem Soc. 2010; 132(20):6929-31. PMC: 2874097. DOI: 10.1021/ja102103n. View

3.
DeMarco M, Woods R, Prestegard J, Tian F . Presentation of membrane-anchored glycosphingolipids determined from molecular dynamics simulations and NMR paramagnetic relaxation rate enhancement. J Am Chem Soc. 2010; 132(4):1334-8. PMC: 2824572. DOI: 10.1021/ja907518x. View

4.
Bertini I, Emsley L, Lelli M, Luchinat C, Mao J, Pintacuda G . Ultrafast MAS solid-state NMR permits extensive 13C and 1H detection in paramagnetic metalloproteins. J Am Chem Soc. 2010; 132(16):5558-9. DOI: 10.1021/ja100398q. View

5.
Cai S, Seu C, Kovacs Z, Sherry A, Chen Y . Sensitivity enhancement of multidimensional NMR experiments by paramagnetic relaxation effects. J Am Chem Soc. 2006; 128(41):13474-8. DOI: 10.1021/ja0634526. View