» Articles » PMID: 21927991

Salivary Proteins As Predictors and Controls for Oral Health

Overview
Date 2011 Sep 20
PMID 21927991
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

We will provide a translational view of using the recent technological advances in dental research for predicting, monitoring, and preventing the development of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins. New analytical state-of-the-art technologies such as mass spectrometry and atomic force microscopy have revolutionized the field of oral biology. These novel technologies open avenues for a comprehensive characterization of the salivary proteins followed by the evaluation of the physiological functions which could make possible in a near future the development of a new series of synthetic protein for therapeutic propose able to prevent global oral diseases such as periodontal disease and dental caries, the two most prevalent oral diseases in the World.

Citing Articles

Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era.

Moussa D, Ahmad P, Mansour T, Siqueira W Front Cell Infect Microbiol. 2022; 12:887907.

PMID: 35782115 PMC: 9247192. DOI: 10.3389/fcimb.2022.887907.


The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries.

Zhu C, Yuan C, Ao S, Shi X, Chen F, Sun X Front Cell Infect Microbiol. 2019; 8:423.

PMID: 30619773 PMC: 6302014. DOI: 10.3389/fcimb.2018.00423.


Acquired Enamel Pellicle Engineered Peptides: Effects on Hydroxyapatite Crystal Growth.

Valente M, Moffa E, Crosara K, Xiao Y, de Oliveira T, Machado M Sci Rep. 2018; 8(1):3766.

PMID: 29491390 PMC: 5830524. DOI: 10.1038/s41598-018-21854-4.


The presence of acquired enamel pellicle changes acid-induced erosion from dissolution to a softening process.

Mutahar M, Carpenter G, Bartlett D, German M, Moazzez R Sci Rep. 2017; 7(1):10920.

PMID: 28883656 PMC: 5589892. DOI: 10.1038/s41598-017-11498-1.


Dose‑dependent effect of lysozyme upon Candida albicans biofilm.

Sebaa S, Hizette N, Boucherit-Otmani Z, Courtois P Mol Med Rep. 2017; 15(3):1135-1142.

PMID: 28138698 PMC: 5367326. DOI: 10.3892/mmr.2017.6148.


References
1.
Kinniment S, Wimpenny J, Adams D, Marsh P . Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology (Reading). 1996; 142 ( Pt 3):631-638. DOI: 10.1099/13500872-142-3-631. View

2.
Bradshaw D, Marsh P, Schilling K, Cummins D . A modified chemostat system to study the ecology of oral biofilms. J Appl Bacteriol. 1996; 80(2):124-30. DOI: 10.1111/j.1365-2672.1996.tb03199.x. View

3.
Guggenheim M, Shapiro S, Gmur R, Guggenheim B . Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol. 2001; 67(3):1343-50. PMC: 92733. DOI: 10.1128/AEM.67.3.1343-1350.2001. View

4.
Aas J, Paster B, Stokes L, Olsen I, Dewhirst F . Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005; 43(11):5721-32. PMC: 1287824. DOI: 10.1128/JCM.43.11.5721-5732.2005. View

5.
Herles S, Olsen S, Afflitto J, Gaffar A . Chemostat flow cell system: an in vitro model for the evaluation of antiplaque agents. J Dent Res. 1994; 73(11):1748-55. DOI: 10.1177/00220345940730111101. View