Irshad K, Akash M, Rehman K, Nadeem A, Shahzad A
ACS Omega. 2024; 9(13):15383-15400.
PMID: 38585127
PMC: 10993374.
DOI: 10.1021/acsomega.3c10119.
Peng L, Zhu H, Wang H, Guo Z, Wu Q, Yang C
Nat Commun. 2023; 14(1):5734.
PMID: 37714847
PMC: 10504294.
DOI: 10.1038/s41467-023-41490-5.
Lopez-Goerne T, Padilla-Godinez F
Nanomaterials (Basel). 2023; 13(9).
PMID: 37177086
PMC: 10180296.
DOI: 10.3390/nano13091541.
Pozharov V, Minko T
Pharmaceutics. 2023; 15(1).
PMID: 36678823
PMC: 9864317.
DOI: 10.3390/pharmaceutics15010194.
Eckmann D, Bradley R, Kandy S, Patil K, Janmey P, Radhakrishnan R
Curr Opin Struct Biol. 2020; 64:104-110.
PMID: 32731155
PMC: 7666034.
DOI: 10.1016/j.sbi.2020.06.023.
Analysis of the Binding of Analyte-Receptor in a Micro-Fluidic Channel for a Biosensor based on Brownian Motion.
Choi S, Lee W, Lee G, Yoo Y
Micromachines (Basel). 2020; 11(6).
PMID: 32503275
PMC: 7346006.
DOI: 10.3390/mi11060570.
Nanoparticle transport phenomena in confined flows.
Radhakrishnan R, Farokhirad S, Eckmann D, Ayyaswamy P
Adv Heat Transf. 2019; 51:55-129.
PMID: 31692964
PMC: 6831088.
DOI: 10.1016/bs.aiht.2019.08.002.
Nanofluid Dynamics of Flexible Polymeric Nanoparticles Under Wall Confinement.
Farokhirad S, Ramakrishnan N, Eckmann D, Ayyaswamy P, Radhakrishnan R
J Heat Transfer. 2019; 141(5):0524011-524016.
PMID: 31186582
PMC: 6528683.
DOI: 10.1115/1.4043014.
Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions.
Ramakrishnan N, Wang Y, Eckmann D, Ayyaswamy P, Radhakrishnan R
J Fluid Mech. 2017; 821:117-152.
PMID: 29109590
PMC: 5669124.
DOI: 10.1017/jfm.2017.182.
Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics.
Radhakrishnan R, Yu H, Eckmann D, Ayyaswamy P
J Heat Transfer. 2016; 139(3):0330011-330019.
PMID: 28035168
PMC: 5125320.
DOI: 10.1115/1.4035006.
Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
Vitoshkin H, Yu H, Eckmann D, Ayyaswamy P, Radhakrishnan R
Phys Rev Fluids. 2016; 1.
PMID: 27830213
PMC: 5098402.
DOI: 10.1103/PhysRevFluids.1.054104.
Multiscale Modeling in the Clinic: Drug Design and Development.
Clancy C, An G, Cannon W, Liu Y, May E, Ortoleva P
Ann Biomed Eng. 2016; 44(9):2591-610.
PMID: 26885640
PMC: 4983472.
DOI: 10.1007/s10439-016-1563-0.
Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.
Yu H, Eckmann D, Ayyaswamy P, Radhakrishnan R
Phys Rev E Stat Nonlin Soft Matter Phys. 2015; 91(5):052303.
PMID: 26066173
PMC: 4467459.
DOI: 10.1103/PhysRevE.91.052303.
MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
Uma B, Ayyaswamy P, Radhakrishnan R, Eckmann D
Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012). 2015; 2012:735-743.
PMID: 25621317
PMC: 4301268.
DOI: 10.1115/MNHMT2012-75019.
Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
Uma B, Ayyaswamy P, Radhakrishnan R, Eckmann D
Int J Micronano Scale Transp. 2013; 3(1-2):13-20.
PMID: 23950764
PMC: 3742337.
DOI: 10.1260/1759-3093.3.1-2.13.
Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation.
Ayyaswamy P, Muzykantov V, Eckmann D, Radhakrishnan R
J Nanotechnol Eng Med. 2013; 4(1):101011-1010115.
PMID: 23917383
PMC: 3708709.
DOI: 10.1115/1.4024004.
Nanocarrier-Cell Surface Adhesive and Hydrodynamic Interactions: Ligand-Receptor Bond Sensitivity Study.
Uma B, Radhakrishnan R, Eckmann D, Ayyaswamy P
J Nanotechnol Eng Med. 2013; 3(3):310101-310108.
PMID: 23917171
PMC: 3707183.
DOI: 10.1115/1.4007522.
Temporal Multiscale Approach for Nanocarrier Motion with Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery.
Radhakrishnan R, Uma B, Liu J, Ayyaswamy P, Eckmann D
J Comput Phys. 2013; 244:252-263.
PMID: 23853388
PMC: 3706300.
DOI: 10.1016/j.jcp.2012.10.026.
A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.
Uma B, Radhakrishnan R, Eckmann D, Ayyaswamy P
J Heat Transfer. 2013; 135(1).
PMID: 23814315
PMC: 3691872.
DOI: 10.1115/1.4007668.
A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
Uma B, Eckmann D, Ayyaswamy P, Radhakrishnan R
Mol Phys. 2012; 110(11-12):1057-1067.
PMID: 22865935
PMC: 3410742.
DOI: 10.1080/00268976.2012.663510.