» Articles » PMID: 21901141

Impaired OXPHOS Complex III in Breast Cancer

Overview
Journal PLoS One
Date 2011 Sep 9
PMID 21901141
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

We measured the mitochondrial oxidative phosphorylation (mtOXPHOS) activities of all five complexes and determined the activity and gene expression in detail of the Complex III subunits in human breast cancer cell lines and primary tumors. Our analysis revealed dramatic differences in activity of complex III between normal and aggressive metastatic breast cancer cell lines. Determination of Complex III subunit gene expression identified over expression and co-regulation of UQCRFS1 (encoding RISP protein) and UQCRH (encoding Hinge protein) in 6 out of 9 human breast tumors. Analyses of UQCRFS1/RISP expression in additional matched normal and breast tumors demonstrated an over expression in 14 out of 40 (35%) breast tumors. UQCRFS1/RISP knockdown in breast tumor cell line led to decreased mitochondrial membrane potential as well as a decrease in matrigel invasion. Furthermore, reduced matrigel invasion was mediated by reduced ROS levels coinciding with decreased expression of NADPH oxidase 2, 3, 4 and 5 involved in ROS production. These studies provide direct evidence for contribution of impaired mtOXPHOS Complex III to breast tumorigenesis.

Citing Articles

p66Shc Protein-Oxidative Stress Sensor or Redox Enzyme: Its Potential Role in Mitochondrial Metabolism of Human Breast Cancer.

Prill M, Sardao V, Sobczak M, Nowis D, Szymanski J, Wieckowski M Cancers (Basel). 2024; 16(19).

PMID: 39409944 PMC: 11476363. DOI: 10.3390/cancers16193324.


-Glycosylation of MRS2 balances aerobic and anaerobic energy production by reducing rapid mitochondrial Mg influx in conditions of high glucose or impaired respiratory chain function.

Peng M, Mathew N, Anderson V, Falk M, Nakamaru-Ogiso E bioRxiv. 2024; .

PMID: 39026824 PMC: 11257584. DOI: 10.1101/2024.07.09.602756.


Mitochondrial Proteins as Metabolic Biomarkers and Sites for Therapeutic Intervention in Primary and Metastatic Cancers.

Robledo-Cadena D, Pacheco-Velazquez S, Vargas-Navarro J, Padilla-Flores J, Moreno-Sanchez R, Rodriguez-Enriquez S Mini Rev Med Chem. 2024; 24(12):1187-1202.

PMID: 39004839 DOI: 10.2174/0113895575254320231030051124.


Acyl-CoA synthetase 4 modulates mitochondrial function in breast cancer cells.

Benzo Y, Prada J, Dattilo M, Bigi M, Castillo A, Mori Sequeiros Garcia M Heliyon. 2024; 10(9):e30639.

PMID: 38756582 PMC: 11096749. DOI: 10.1016/j.heliyon.2024.e30639.


NADPH Oxidase 3: Beyond the Inner Ear.

Herb M Antioxidants (Basel). 2024; 13(2).

PMID: 38397817 PMC: 10886416. DOI: 10.3390/antiox13020219.


References
1.
Yusenko M, Kuiper R, Boethe T, Ljungberg B, Geurts van Kessel A, Kovacs G . High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009; 9:152. PMC: 2686725. DOI: 10.1186/1471-2407-9-152. View

2.
Kaneko S, Gerasimova T, Smith S, Lloyd K, Suzumori K, Robert Young S . CA125 and UQCRFS1 FISH studies of ovarian carcinoma. Gynecol Oncol. 2003; 90(1):29-36. DOI: 10.1016/s0090-8258(03)00144-6. View

3.
Desouki M, Kulawiec M, Bansal S, Das G, Singh K . Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther. 2005; 4(12):1367-73. DOI: 10.4161/cbt.4.12.2233. View

4.
Dyrskjot L, Kruhoffer M, Thykjaer T, Marcussen N, Jensen J, Moller K . Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 2004; 64(11):4040-8. DOI: 10.1158/0008-5472.CAN-03-3620. View

5.
Pyeon D, Newton M, Lambert P, den Boon J, Sengupta S, Marsit C . Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 2007; 67(10):4605-19. PMC: 2858285. DOI: 10.1158/0008-5472.CAN-06-3619. View