» Articles » PMID: 21893226

Role of Farnesoid X Receptor (FXR) in the Process of Differentiation of Bone Marrow Stromal Cells into Osteoblasts

Overview
Journal Bone
Date 2011 Sep 7
PMID 21893226
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Bone tissue contains bile acids which accumulate from serum and which can be released in large amounts in the bone microenvironment during bone resorption. However, the direct effects of bile acids on bone cells remain largely unexplored. Bile acids have been identified as physiological ligands of the farnesoid X receptor (FXR, NR1H4). In the present study, we have examined the effects of FXR activation/inhibition on the osteoblastic differentiation of human bone marrow stromal cells (BMSC). We first demonstrated the expression of FXR in BMSC and SaOS2 osteoblast-like cells, and observed that FXR activation by chenodeoxycholic acid (CDCA) or by farnesol (FOH) increases the activity of alkaline phosphatase and the calcification of the extracellular matrix. In addition, we observed that FXR agonists are able to stimulate the expression of osteoblast marker genes [bone sialoprotein (BSP), osteocalcin (OC), osteopontin (OPN) and alkaline phosphatase (ALP)] (FXR involvement validated by shRNA-induced gene silencing), as well as the DNA binding activity of the bone transcription factor RUNX2 (EMSA and ChIP assay). Importantly, we observed that nitrogen-containing bisphosphonates (BPs) inhibit the basal osteoblastic differentiation of BMSC, possibly through suppression of endogenous FOH production, independently of their effects on protein prenylation. Likewise, we found that the FXR antagonist guggulsterone (GGS) inhibits ALP activity, calcium deposition, DNA binding of RUNX2, and bone marker expression, indicating that GGS interferes with osteoblastic differentiation. Furthermore, GGS induced the appearance of lipid vesicles in BMSC and stimulated the expression of adipose tissue markers (peroxisome proliferator activated receptor-gamma (PPARγ), adipoQ, leptin and CCAAT/enhancer-binding protein-alpha (C/EBPα)). In conclusion, our data support a new role for FXR in the modulation of osteoblast/adipocyte balance: its activation stimulates RUNX2-mediated osteoblastic differentiation of BMSC, whereas its inhibition leads to an adipocyte-like phenotype.

Citing Articles

Specnuezhenide Alleviates Senile Osteoporosis by Activating TGR5/FXR Signaling in Bone Marrow Mesenchymal Stem Cells and RANKL-Induced Osteoclasts.

Deng X, Lin B, Xiao W, Wang F, Xu P, Wang N Drug Des Devel Ther. 2025; 19:1595-1608.

PMID: 40066080 PMC: 11892377. DOI: 10.2147/DDDT.S493711.


Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2.

Dong Q, Fu H, Li W, Ji X, Yin Y, Zhang Y Bone Res. 2025; 13(1):20.

PMID: 39885145 PMC: 11782663. DOI: 10.1038/s41413-024-00394-w.


Development of biomaterials for bone tissue engineering based on bile acids.

Liu Y, Liu X, Liu C, Zhang W, Shi T, Liu G J Mater Sci Mater Med. 2025; 36(1):11.

PMID: 39812871 PMC: 11735600. DOI: 10.1007/s10856-024-06850-7.


FXR Activation Accelerates Early Phase of Osteoblast Differentiation Through COX-2-PGE-EP4 Axis in BMP-2-Induced Mouse Mesenchymal Stem Cells.

Fujimori K, Iguchi Y, Yamashita Y, Gohda K, Teno N Molecules. 2025; 30(1.

PMID: 39795115 PMC: 11722014. DOI: 10.3390/molecules30010058.


Gut microbiota and microbial metabolites for osteoporosis.

Zheng X, Wang D, Jiang Y, Song C Gut Microbes. 2024; 17(1):2437247.

PMID: 39690861 PMC: 11657146. DOI: 10.1080/19490976.2024.2437247.