» Articles » PMID: 21892164

Graphene Plasmonics for Tunable Terahertz Metamaterials

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2011 Sep 6
PMID 21892164
Citations 248
Authors
Affiliations
Soon will be listed here.
Abstract

Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

Citing Articles

Recent progress in terahertz sensors based on graphene metamaterials.

Zhou Z, Gan Z, Cao L Discov Nano. 2025; 20(1):24.

PMID: 39928197 PMC: 11811375. DOI: 10.1186/s11671-025-04204-y.


Momentum tunnelling between nanoscale liquid flows.

Coquinot B, Bui A, Toquer D, Michaelides A, Kavokine N, Cox S Nat Nanotechnol. 2025; .

PMID: 39747601 DOI: 10.1038/s41565-024-01842-8.


Mid-infrared integrated electro-optic modulators: a review.

Xu T, Dong Y, Zhong Q, Zheng S, Qiu Y, Zhao X Nanophotonics. 2024; 12(19):3683-3706.

PMID: 39678471 PMC: 11635952. DOI: 10.1515/nanoph-2023-0286.


Active metal-graphene hybrid terahertz surface plasmon polaritons.

Feng M, Zhang B, Ling H, Zhang Z, Wang Y, Wang Y Nanophotonics. 2024; 11(14):3331-3338.

PMID: 39635550 PMC: 11501757. DOI: 10.1515/nanoph-2022-0189.


Optically driven plasmons in graphene/hBN van der Waals heterostructures: simulating s-SNOM measurements.

Golenic N, de Gironcoli S, Despoja V Nanophotonics. 2024; 13(15):2765-2780.

PMID: 39635249 PMC: 11502017. DOI: 10.1515/nanoph-2023-0841.


References
1.
Yen T, Padilla W, Fang N, Vier D, Smith D, Pendry J . Terahertz magnetic response from artificial materials. Science. 2004; 303(5663):1494-6. DOI: 10.1126/science.1094025. View

2.
Yamamoto K, Tani M, Hangyo M . Terahertz time-domain spectroscopy of imidazolium ionic liquids. J Phys Chem B. 2007; 111(18):4854-9. DOI: 10.1021/jp067171w. View

3.
Koppens F, Chang D, de Abajo F . Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 2011; 11(8):3370-7. DOI: 10.1021/nl201771h. View

4.
Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R . Observation of plasmarons in quasi-freestanding doped graphene. Science. 2010; 328(5981):999-1002. DOI: 10.1126/science.1186489. View

5.
Brar V, Wickenburg S, Panlasigui M, Park C, Wehling T, Zhang Y . Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. Phys Rev Lett. 2010; 104(3):036805. DOI: 10.1103/PhysRevLett.104.036805. View