» Articles » PMID: 21861279

Surface Functionalization of Magnetic Iron Oxide Nanoparticles for MRI Applications - Effect of Anchoring Group and Ligand Exchange Protocol

Overview
Specialty Radiology
Date 2011 Aug 24
PMID 21861279
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Hydrophobic magnetite nanoparticles synthesized from thermal decomposition of iron salts must be rendered hydrophilic for their application as MRI contrast agents. This process requires refunctionalizing the surface of the nanoparticles with a hydrophilic organic coating such as polyethylene glycol. Two parameters were found to influence the magnetic behavior and relaxivity of the resulting hydrophilic iron oxide nanoparticles: the functionality of the anchoring group and the protocol followed for the functionalization. Nanoparticles coated with PEGs via a catecholate-type anchoring moiety maintain the saturation magnetization and relaxivity of the hydrophobic magnetite precursor. Other anchoring functionalities, such as phosphonate, carboxylate and dopamine decrease the magnetization and relaxivity of the contrast agent. The protocol for functionalizing the nanoparticles also influences the magnetic behavior of the material. Nanoparticles refunctionalized according to a direct biphasic protocol exhibit higher relaxivity than those refunctionalized according to a two-step procedure which first involves stripping the nanoparticles. This research presents the first systematic study of both the binding moiety and the functionalization protocol on the relaxivity and magnetization of water-soluble coated iron oxide nanoparticles used as MRI contrast agents.

Citing Articles

Iron Oxide Nanoparticle-Based T Contrast Agents for Magnetic Resonance Imaging: A Review.

Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X Nanomaterials (Basel). 2025; 15(1.

PMID: 39791792 PMC: 11722098. DOI: 10.3390/nano15010033.


Mussel-Inspired Multifunctional Polyethylene Glycol Nanoparticle Interfaces.

Casagualda C, Lopez-Moral A, Alfonso-Triguero P, Lorenzo J, Alibes R, Busque F Biomimetics (Basel). 2024; 9(9).

PMID: 39329553 PMC: 11429798. DOI: 10.3390/biomimetics9090531.


Single and Multitarget Systems for Drug Delivery and Detection: Up-to-Date Strategies for Brain Disorders.

Grosso C, Silva A, Delerue-Matos C, Barroso M Pharmaceuticals (Basel). 2023; 16(12).

PMID: 38139848 PMC: 10747932. DOI: 10.3390/ph16121721.


NMR Characterization of Polyethylene Glycol Conjugates for Nanoparticle Functionalization.

Pasek-Allen J, Wilharm R, Bischof J, Pierre V ACS Omega. 2023; 8(4):4331-4336.

PMID: 36743059 PMC: 9893458. DOI: 10.1021/acsomega.2c07669.


Mussel-inspired biomaterials: From chemistry to clinic.

Taghizadeh A, Taghizadeh M, Yazdi M, Zarrintaj P, Ramsey J, Seidi F Bioeng Transl Med. 2022; 7(3):e10385.

PMID: 36176595 PMC: 9472010. DOI: 10.1002/btm2.10385.


References
1.
Park J, An K, Hwang Y, Park J, Noh H, Kim J . Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004; 3(12):891-5. DOI: 10.1038/nmat1251. View

2.
Sun S, Zeng H, Robinson D, Raoux S, Rice P, Wang S . Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004; 126(1):273-9. DOI: 10.1021/ja0380852. View

3.
Geraldes C, Laurent S . Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2009; 4(1):1-23. DOI: 10.1002/cmmi.265. View

4.
Caravan P, Ellison J, McMurry T, Lauffer R . Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev. 2001; 99(9):2293-352. DOI: 10.1021/cr980440x. View

5.
Shultz M, Reveles J, Khanna S, Carpenter E . Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J Am Chem Soc. 2007; 129(9):2482-7. DOI: 10.1021/ja0651963. View